123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- // Copyright (c) 2006 Xiaogang Zhang
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_BESSEL_I1_HPP
- #define BOOST_MATH_BESSEL_I1_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/tools/rational.hpp>
- #include <boost/math/tools/big_constant.hpp>
- #include <boost/assert.hpp>
- // Modified Bessel function of the first kind of order one
- // minimax rational approximations on intervals, see
- // Blair and Edwards, Chalk River Report AECL-4928, 1974
- namespace boost { namespace math { namespace detail{
- template <typename T>
- T bessel_i1(T x);
- template <class T>
- struct bessel_i1_initializer
- {
- struct init
- {
- init()
- {
- do_init();
- }
- static void do_init()
- {
- bessel_i1(T(1));
- }
- void force_instantiate()const{}
- };
- static const init initializer;
- static void force_instantiate()
- {
- initializer.force_instantiate();
- }
- };
- template <class T>
- const typename bessel_i1_initializer<T>::init bessel_i1_initializer<T>::initializer;
- template <typename T>
- T bessel_i1(T x)
- {
- bessel_i1_initializer<T>::force_instantiate();
- static const T P1[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4577180278143463643e+15)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7732037840791591320e+14)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9876779648010090070e+12)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3357437682275493024e+11)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4828267606612366099e+09)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0588550724769347106e+07)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1894091982308017540e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8225946631657315931e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.7207090827310162436e-01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.1746443287817501309e-04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3466829827635152875e-06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4831904935994647675e-09)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1928788903603238754e-12)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5245515583151902910e-16)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9705291802535139930e-19)),
- };
- static const T Q1[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9154360556286927285e+15)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.7887501377547640438e+12)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4386907088588283434e+10)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1594225856856884006e+07)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1326864679904189920e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
- };
- static const T P2[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4582087408985668208e-05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9359825138577646443e-04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9204895411257790122e-02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.4198728018058047439e-01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960118277609544334e+00)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9746376087200685843e+00)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5591872901933459000e-01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0437159056137599999e-02)),
- };
- static const T Q2[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7510433111922824643e-05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2835624489492512649e-03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4212010813186530069e-02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.5017476463217924408e-01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2593714889036996297e+00)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8806586721556593450e+00)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
- };
- T value, factor, r, w;
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- w = abs(x);
- if (x == 0)
- {
- return static_cast<T>(0);
- }
- if (w <= 15) // w in (0, 15]
- {
- T y = x * x;
- r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
- factor = w;
- value = factor * r;
- }
- else // w in (15, \infty)
- {
- T y = 1 / w - T(1) / 15;
- r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
- factor = exp(w) / sqrt(w);
- value = factor * r;
- }
- if (x < 0)
- {
- value *= -value; // odd function
- }
- return value;
- }
- }}} // namespaces
- #endif // BOOST_MATH_BESSEL_I1_HPP
|