bessel_i1.hpp 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_BESSEL_I1_HPP
  6. #define BOOST_MATH_BESSEL_I1_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <boost/math/tools/rational.hpp>
  11. #include <boost/math/tools/big_constant.hpp>
  12. #include <boost/assert.hpp>
  13. // Modified Bessel function of the first kind of order one
  14. // minimax rational approximations on intervals, see
  15. // Blair and Edwards, Chalk River Report AECL-4928, 1974
  16. namespace boost { namespace math { namespace detail{
  17. template <typename T>
  18. T bessel_i1(T x);
  19. template <class T>
  20. struct bessel_i1_initializer
  21. {
  22. struct init
  23. {
  24. init()
  25. {
  26. do_init();
  27. }
  28. static void do_init()
  29. {
  30. bessel_i1(T(1));
  31. }
  32. void force_instantiate()const{}
  33. };
  34. static const init initializer;
  35. static void force_instantiate()
  36. {
  37. initializer.force_instantiate();
  38. }
  39. };
  40. template <class T>
  41. const typename bessel_i1_initializer<T>::init bessel_i1_initializer<T>::initializer;
  42. template <typename T>
  43. T bessel_i1(T x)
  44. {
  45. bessel_i1_initializer<T>::force_instantiate();
  46. static const T P1[] = {
  47. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4577180278143463643e+15)),
  48. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7732037840791591320e+14)),
  49. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9876779648010090070e+12)),
  50. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3357437682275493024e+11)),
  51. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4828267606612366099e+09)),
  52. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0588550724769347106e+07)),
  53. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1894091982308017540e+04)),
  54. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8225946631657315931e+02)),
  55. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.7207090827310162436e-01)),
  56. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.1746443287817501309e-04)),
  57. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3466829827635152875e-06)),
  58. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4831904935994647675e-09)),
  59. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1928788903603238754e-12)),
  60. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5245515583151902910e-16)),
  61. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9705291802535139930e-19)),
  62. };
  63. static const T Q1[] = {
  64. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9154360556286927285e+15)),
  65. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.7887501377547640438e+12)),
  66. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4386907088588283434e+10)),
  67. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1594225856856884006e+07)),
  68. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1326864679904189920e+03)),
  69. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  70. };
  71. static const T P2[] = {
  72. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4582087408985668208e-05)),
  73. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9359825138577646443e-04)),
  74. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9204895411257790122e-02)),
  75. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.4198728018058047439e-01)),
  76. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960118277609544334e+00)),
  77. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9746376087200685843e+00)),
  78. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5591872901933459000e-01)),
  79. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0437159056137599999e-02)),
  80. };
  81. static const T Q2[] = {
  82. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7510433111922824643e-05)),
  83. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2835624489492512649e-03)),
  84. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4212010813186530069e-02)),
  85. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.5017476463217924408e-01)),
  86. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2593714889036996297e+00)),
  87. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8806586721556593450e+00)),
  88. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  89. };
  90. T value, factor, r, w;
  91. BOOST_MATH_STD_USING
  92. using namespace boost::math::tools;
  93. w = abs(x);
  94. if (x == 0)
  95. {
  96. return static_cast<T>(0);
  97. }
  98. if (w <= 15) // w in (0, 15]
  99. {
  100. T y = x * x;
  101. r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
  102. factor = w;
  103. value = factor * r;
  104. }
  105. else // w in (15, \infty)
  106. {
  107. T y = 1 / w - T(1) / 15;
  108. r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
  109. factor = exp(w) / sqrt(w);
  110. value = factor * r;
  111. }
  112. if (x < 0)
  113. {
  114. value *= -value; // odd function
  115. }
  116. return value;
  117. }
  118. }}} // namespaces
  119. #endif // BOOST_MATH_BESSEL_I1_HPP