bessel_j1.hpp 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_BESSEL_J1_HPP
  6. #define BOOST_MATH_BESSEL_J1_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <boost/math/constants/constants.hpp>
  11. #include <boost/math/tools/rational.hpp>
  12. #include <boost/math/tools/big_constant.hpp>
  13. #include <boost/assert.hpp>
  14. // Bessel function of the first kind of order one
  15. // x <= 8, minimax rational approximations on root-bracketing intervals
  16. // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
  17. namespace boost { namespace math{ namespace detail{
  18. template <typename T>
  19. T bessel_j1(T x);
  20. template <class T>
  21. struct bessel_j1_initializer
  22. {
  23. struct init
  24. {
  25. init()
  26. {
  27. do_init();
  28. }
  29. static void do_init()
  30. {
  31. bessel_j1(T(1));
  32. }
  33. void force_instantiate()const{}
  34. };
  35. static const init initializer;
  36. static void force_instantiate()
  37. {
  38. initializer.force_instantiate();
  39. }
  40. };
  41. template <class T>
  42. const typename bessel_j1_initializer<T>::init bessel_j1_initializer<T>::initializer;
  43. template <typename T>
  44. T bessel_j1(T x)
  45. {
  46. bessel_j1_initializer<T>::force_instantiate();
  47. static const T P1[] = {
  48. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4258509801366645672e+11)),
  49. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6781041261492395835e+09)),
  50. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1548696764841276794e+08)),
  51. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.8062904098958257677e+05)),
  52. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4615792982775076130e+03)),
  53. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0650724020080236441e+01)),
  54. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0767857011487300348e-02))
  55. };
  56. static const T Q1[] = {
  57. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1868604460820175290e+12)),
  58. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.2091902282580133541e+10)),
  59. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0228375140097033958e+08)),
  60. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.9117614494174794095e+05)),
  61. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0742272239517380498e+03)),
  62. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  63. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
  64. };
  65. static const T P2[] = {
  66. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7527881995806511112e+16)),
  67. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.6608531731299018674e+15)),
  68. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6658018905416665164e+13)),
  69. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5580665670910619166e+11)),
  70. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8113931269860667829e+09)),
  71. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.0793266148011179143e+06)),
  72. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.5023342220781607561e+03)),
  73. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6179191852758252278e+00))
  74. };
  75. static const T Q2[] = {
  76. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7253905888447681194e+18)),
  77. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7128800897135812012e+16)),
  78. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.4899346165481429307e+13)),
  79. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7622777286244082666e+11)),
  80. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4872502899596389593e+08)),
  81. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1267125065029138050e+06)),
  82. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3886978985861357615e+03)),
  83. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  84. };
  85. static const T PC[] = {
  86. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)),
  87. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)),
  88. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)),
  89. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)),
  90. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)),
  91. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)),
  92. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
  93. };
  94. static const T QC[] = {
  95. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)),
  96. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)),
  97. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)),
  98. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)),
  99. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)),
  100. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)),
  101. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  102. };
  103. static const T PS[] = {
  104. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)),
  105. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)),
  106. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)),
  107. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)),
  108. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)),
  109. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)),
  110. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
  111. };
  112. static const T QS[] = {
  113. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)),
  114. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)),
  115. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)),
  116. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)),
  117. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)),
  118. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)),
  119. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  120. };
  121. static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8317059702075123156e+00)),
  122. x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0155866698156187535e+00)),
  123. x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.810e+02)),
  124. x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2527979248768438556e-04)),
  125. x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7960e+03)),
  126. x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8330184381246462950e-05));
  127. T value, factor, r, rc, rs, w;
  128. BOOST_MATH_STD_USING
  129. using namespace boost::math::tools;
  130. using namespace boost::math::constants;
  131. w = abs(x);
  132. if (x == 0)
  133. {
  134. return static_cast<T>(0);
  135. }
  136. if (w <= 4) // w in (0, 4]
  137. {
  138. T y = x * x;
  139. BOOST_ASSERT(sizeof(P1) == sizeof(Q1));
  140. r = evaluate_rational(P1, Q1, y);
  141. factor = w * (w + x1) * ((w - x11/256) - x12);
  142. value = factor * r;
  143. }
  144. else if (w <= 8) // w in (4, 8]
  145. {
  146. T y = x * x;
  147. BOOST_ASSERT(sizeof(P2) == sizeof(Q2));
  148. r = evaluate_rational(P2, Q2, y);
  149. factor = w * (w + x2) * ((w - x21/256) - x22);
  150. value = factor * r;
  151. }
  152. else // w in (8, \infty)
  153. {
  154. T y = 8 / w;
  155. T y2 = y * y;
  156. BOOST_ASSERT(sizeof(PC) == sizeof(QC));
  157. BOOST_ASSERT(sizeof(PS) == sizeof(QS));
  158. rc = evaluate_rational(PC, QC, y2);
  159. rs = evaluate_rational(PS, QS, y2);
  160. factor = 1 / (sqrt(w) * constants::root_pi<T>());
  161. //
  162. // What follows is really just:
  163. //
  164. // T z = w - 0.75f * pi<T>();
  165. // value = factor * (rc * cos(z) - y * rs * sin(z));
  166. //
  167. // but using the sin/cos addition rules plus constants
  168. // for the values of sin/cos of 3PI/4 which then cancel
  169. // out with corresponding terms in "factor".
  170. //
  171. T sx = sin(x);
  172. T cx = cos(x);
  173. value = factor * (rc * (sx - cx) + y * rs * (sx + cx));
  174. }
  175. if (x < 0)
  176. {
  177. value *= -1; // odd function
  178. }
  179. return value;
  180. }
  181. }}} // namespaces
  182. #endif // BOOST_MATH_BESSEL_J1_HPP