bessel_k0.hpp 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_BESSEL_K0_HPP
  6. #define BOOST_MATH_BESSEL_K0_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <boost/math/tools/rational.hpp>
  11. #include <boost/math/tools/big_constant.hpp>
  12. #include <boost/math/policies/error_handling.hpp>
  13. #include <boost/assert.hpp>
  14. // Modified Bessel function of the second kind of order zero
  15. // minimax rational approximations on intervals, see
  16. // Russon and Blair, Chalk River Report AECL-3461, 1969
  17. namespace boost { namespace math { namespace detail{
  18. template <typename T, typename Policy>
  19. T bessel_k0(T x, const Policy&);
  20. template <class T, class Policy>
  21. struct bessel_k0_initializer
  22. {
  23. struct init
  24. {
  25. init()
  26. {
  27. do_init();
  28. }
  29. static void do_init()
  30. {
  31. bessel_k0(T(1), Policy());
  32. }
  33. void force_instantiate()const{}
  34. };
  35. static const init initializer;
  36. static void force_instantiate()
  37. {
  38. initializer.force_instantiate();
  39. }
  40. };
  41. template <class T, class Policy>
  42. const typename bessel_k0_initializer<T, Policy>::init bessel_k0_initializer<T, Policy>::initializer;
  43. template <typename T, typename Policy>
  44. T bessel_k0(T x, const Policy& pol)
  45. {
  46. BOOST_MATH_INSTRUMENT_CODE(x);
  47. bessel_k0_initializer<T, Policy>::force_instantiate();
  48. static const T P1[] = {
  49. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4708152720399552679e+03)),
  50. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.9169059852270512312e+03)),
  51. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6850901201934832188e+02)),
  52. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1999463724910714109e+01)),
  53. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3166052564989571850e-01)),
  54. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8599221412826100000e-04))
  55. };
  56. static const T Q1[] = {
  57. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1312714303849120380e+04)),
  58. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.4994418972832303646e+02)),
  59. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  60. };
  61. static const T P2[] = {
  62. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6128136304458193998e+06)),
  63. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.7333769444840079748e+05)),
  64. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7984434409411765813e+04)),
  65. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9501657892958843865e+02)),
  66. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6414452837299064100e+00))
  67. };
  68. static const T Q2[] = {
  69. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6128136304458193998e+06)),
  70. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9865713163054025489e+04)),
  71. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5064972445877992730e+02)),
  72. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  73. };
  74. static const T P3[] = {
  75. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1600249425076035558e+02)),
  76. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3444738764199315021e+03)),
  77. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8321525870183537725e+04)),
  78. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1557062783764037541e+04)),
  79. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5097646353289914539e+05)),
  80. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7398867902565686251e+05)),
  81. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0577068948034021957e+05)),
  82. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1075408980684392399e+04)),
  83. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.6832589957340267940e+03)),
  84. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1394980557384778174e+02))
  85. };
  86. static const T Q3[] = {
  87. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.2556599177304839811e+01)),
  88. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8821890840982713696e+03)),
  89. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4847228371802360957e+04)),
  90. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8824616785857027752e+04)),
  91. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2689839587977598727e+05)),
  92. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5144644673520157801e+05)),
  93. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.7418829762268075784e+04)),
  94. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1474655750295278825e+04)),
  95. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4329628889746408858e+03)),
  96. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0013443064949242491e+02)),
  97. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  98. };
  99. T value, factor, r, r1, r2;
  100. BOOST_MATH_STD_USING
  101. using namespace boost::math::tools;
  102. static const char* function = "boost::math::bessel_k0<%1%>(%1%,%1%)";
  103. if (x < 0)
  104. {
  105. return policies::raise_domain_error<T>(function,
  106. "Got x = %1%, but argument x must be non-negative, complex number result not supported", x, pol);
  107. }
  108. if (x == 0)
  109. {
  110. return policies::raise_overflow_error<T>(function, 0, pol);
  111. }
  112. if (x <= 1) // x in (0, 1]
  113. {
  114. T y = x * x;
  115. r1 = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
  116. r2 = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
  117. factor = log(x);
  118. value = r1 - factor * r2;
  119. }
  120. else // x in (1, \infty)
  121. {
  122. T y = 1 / x;
  123. r = evaluate_polynomial(P3, y) / evaluate_polynomial(Q3, y);
  124. factor = exp(-x) / sqrt(x);
  125. value = factor * r;
  126. BOOST_MATH_INSTRUMENT_CODE("y = " << y);
  127. BOOST_MATH_INSTRUMENT_CODE("r = " << r);
  128. BOOST_MATH_INSTRUMENT_CODE("factor = " << factor);
  129. BOOST_MATH_INSTRUMENT_CODE("value = " << value);
  130. }
  131. return value;
  132. }
  133. }}} // namespaces
  134. #endif // BOOST_MATH_BESSEL_K0_HPP