123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- // Copyright (c) 2006 Xiaogang Zhang
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_BESSEL_K1_HPP
- #define BOOST_MATH_BESSEL_K1_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/tools/rational.hpp>
- #include <boost/math/tools/big_constant.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/assert.hpp>
- // Modified Bessel function of the second kind of order one
- // minimax rational approximations on intervals, see
- // Russon and Blair, Chalk River Report AECL-3461, 1969
- namespace boost { namespace math { namespace detail{
- template <typename T, typename Policy>
- T bessel_k1(T x, const Policy&);
- template <class T, class Policy>
- struct bessel_k1_initializer
- {
- struct init
- {
- init()
- {
- do_init();
- }
- static void do_init()
- {
- bessel_k1(T(1), Policy());
- }
- void force_instantiate()const{}
- };
- static const init initializer;
- static void force_instantiate()
- {
- initializer.force_instantiate();
- }
- };
- template <class T, class Policy>
- const typename bessel_k1_initializer<T, Policy>::init bessel_k1_initializer<T, Policy>::initializer;
- template <typename T, typename Policy>
- T bessel_k1(T x, const Policy& pol)
- {
- bessel_k1_initializer<T, Policy>::force_instantiate();
- static const T P1[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2149374878243304548e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1938920065420586101e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7733324035147015630e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1885382604084798576e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.9991373567429309922e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8127070456878442310e-01))
- };
- static const T Q1[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2149374878243304548e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7264298672067697862e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.8143915754538725829e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- static const T P2[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3531161492785421328e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4758069205414222471e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.5051623763436087023e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.3103913335180275253e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2795590826955002390e-01))
- };
- static const T Q2[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.7062322985570842656e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3117653211351080007e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0507151578787595807e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- static const T P3[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2196792496874548962e+00)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4137176114230414036e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4122953486801312910e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3319486433183221990e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.8590657697910288226e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4540675585544584407e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3123742209168871550e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1094256146537402173e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3182609918569941308e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.5584584631176030810e+00)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4257745859173138767e-02))
- };
- static const T Q3[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7710478032601086579e+00)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4552228452758912848e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.5951223655579051357e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.6929165726802648634e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9448440788918006154e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1181000487171943810e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2082692316002348638e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3031020088765390854e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.6001069306861518855e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- T value, factor, r, r1, r2;
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- static const char* function = "boost::math::bessel_k1<%1%>(%1%,%1%)";
- if (x < 0)
- {
- return policies::raise_domain_error<T>(function,
- "Got x = %1%, but argument x must be non-negative, complex number result not supported.", x, pol);
- }
- if (x == 0)
- {
- return policies::raise_overflow_error<T>(function, 0, pol);
- }
- if (x <= 1) // x in (0, 1]
- {
- T y = x * x;
- r1 = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
- r2 = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
- factor = log(x);
- value = (r1 + factor * r2) / x;
- }
- else // x in (1, \infty)
- {
- T y = 1 / x;
- r = evaluate_polynomial(P3, y) / evaluate_polynomial(Q3, y);
- factor = exp(-x) / sqrt(x);
- value = factor * r;
- }
- return value;
- }
- }}} // namespaces
- #endif // BOOST_MATH_BESSEL_K1_HPP
|