bessel_k1.hpp 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_BESSEL_K1_HPP
  6. #define BOOST_MATH_BESSEL_K1_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <boost/math/tools/rational.hpp>
  11. #include <boost/math/tools/big_constant.hpp>
  12. #include <boost/math/policies/error_handling.hpp>
  13. #include <boost/assert.hpp>
  14. // Modified Bessel function of the second kind of order one
  15. // minimax rational approximations on intervals, see
  16. // Russon and Blair, Chalk River Report AECL-3461, 1969
  17. namespace boost { namespace math { namespace detail{
  18. template <typename T, typename Policy>
  19. T bessel_k1(T x, const Policy&);
  20. template <class T, class Policy>
  21. struct bessel_k1_initializer
  22. {
  23. struct init
  24. {
  25. init()
  26. {
  27. do_init();
  28. }
  29. static void do_init()
  30. {
  31. bessel_k1(T(1), Policy());
  32. }
  33. void force_instantiate()const{}
  34. };
  35. static const init initializer;
  36. static void force_instantiate()
  37. {
  38. initializer.force_instantiate();
  39. }
  40. };
  41. template <class T, class Policy>
  42. const typename bessel_k1_initializer<T, Policy>::init bessel_k1_initializer<T, Policy>::initializer;
  43. template <typename T, typename Policy>
  44. T bessel_k1(T x, const Policy& pol)
  45. {
  46. bessel_k1_initializer<T, Policy>::force_instantiate();
  47. static const T P1[] = {
  48. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2149374878243304548e+06)),
  49. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1938920065420586101e+05)),
  50. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7733324035147015630e+05)),
  51. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1885382604084798576e+03)),
  52. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.9991373567429309922e+01)),
  53. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8127070456878442310e-01))
  54. };
  55. static const T Q1[] = {
  56. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2149374878243304548e+06)),
  57. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7264298672067697862e+04)),
  58. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.8143915754538725829e+02)),
  59. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  60. };
  61. static const T P2[] = {
  62. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)),
  63. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3531161492785421328e+06)),
  64. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4758069205414222471e+05)),
  65. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.5051623763436087023e+03)),
  66. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.3103913335180275253e+01)),
  67. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2795590826955002390e-01))
  68. };
  69. static const T Q2[] = {
  70. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.7062322985570842656e+06)),
  71. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3117653211351080007e+04)),
  72. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0507151578787595807e+02)),
  73. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  74. };
  75. static const T P3[] = {
  76. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2196792496874548962e+00)),
  77. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4137176114230414036e+01)),
  78. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4122953486801312910e+02)),
  79. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3319486433183221990e+03)),
  80. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.8590657697910288226e+03)),
  81. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4540675585544584407e+03)),
  82. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3123742209168871550e+03)),
  83. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1094256146537402173e+02)),
  84. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3182609918569941308e+02)),
  85. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.5584584631176030810e+00)),
  86. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4257745859173138767e-02))
  87. };
  88. static const T Q3[] = {
  89. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7710478032601086579e+00)),
  90. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4552228452758912848e+01)),
  91. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.5951223655579051357e+02)),
  92. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.6929165726802648634e+02)),
  93. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9448440788918006154e+03)),
  94. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1181000487171943810e+03)),
  95. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2082692316002348638e+03)),
  96. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3031020088765390854e+02)),
  97. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.6001069306861518855e+01)),
  98. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
  99. };
  100. T value, factor, r, r1, r2;
  101. BOOST_MATH_STD_USING
  102. using namespace boost::math::tools;
  103. static const char* function = "boost::math::bessel_k1<%1%>(%1%,%1%)";
  104. if (x < 0)
  105. {
  106. return policies::raise_domain_error<T>(function,
  107. "Got x = %1%, but argument x must be non-negative, complex number result not supported.", x, pol);
  108. }
  109. if (x == 0)
  110. {
  111. return policies::raise_overflow_error<T>(function, 0, pol);
  112. }
  113. if (x <= 1) // x in (0, 1]
  114. {
  115. T y = x * x;
  116. r1 = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
  117. r2 = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
  118. factor = log(x);
  119. value = (r1 + factor * r2) / x;
  120. }
  121. else // x in (1, \infty)
  122. {
  123. T y = 1 / x;
  124. r = evaluate_polynomial(P3, y) / evaluate_polynomial(Q3, y);
  125. factor = exp(-x) / sqrt(x);
  126. value = factor * r;
  127. }
  128. return value;
  129. }
  130. }}} // namespaces
  131. #endif // BOOST_MATH_BESSEL_K1_HPP