bessel_y0.hpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_BESSEL_Y0_HPP
  6. #define BOOST_MATH_BESSEL_Y0_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <boost/math/special_functions/detail/bessel_j0.hpp>
  11. #include <boost/math/constants/constants.hpp>
  12. #include <boost/math/tools/rational.hpp>
  13. #include <boost/math/tools/big_constant.hpp>
  14. #include <boost/math/policies/error_handling.hpp>
  15. #include <boost/assert.hpp>
  16. // Bessel function of the second kind of order zero
  17. // x <= 8, minimax rational approximations on root-bracketing intervals
  18. // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
  19. namespace boost { namespace math { namespace detail{
  20. template <typename T, typename Policy>
  21. T bessel_y0(T x, const Policy&);
  22. template <class T, class Policy>
  23. struct bessel_y0_initializer
  24. {
  25. struct init
  26. {
  27. init()
  28. {
  29. do_init();
  30. }
  31. static void do_init()
  32. {
  33. bessel_y0(T(1), Policy());
  34. }
  35. void force_instantiate()const{}
  36. };
  37. static const init initializer;
  38. static void force_instantiate()
  39. {
  40. initializer.force_instantiate();
  41. }
  42. };
  43. template <class T, class Policy>
  44. const typename bessel_y0_initializer<T, Policy>::init bessel_y0_initializer<T, Policy>::initializer;
  45. template <typename T, typename Policy>
  46. T bessel_y0(T x, const Policy& pol)
  47. {
  48. bessel_y0_initializer<T, Policy>::force_instantiate();
  49. static const T P1[] = {
  50. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0723538782003176831e+11)),
  51. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.3716255451260504098e+09)),
  52. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0422274357376619816e+08)),
  53. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.1287548474401797963e+06)),
  54. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0102532948020907590e+04)),
  55. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8402381979244993524e+01)),
  56. };
  57. static const T Q1[] = {
  58. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8873865738997033405e+11)),
  59. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1617187777290363573e+09)),
  60. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5662956624278251596e+07)),
  61. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3889393209447253406e+05)),
  62. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6475986689240190091e+02)),
  63. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  64. };
  65. static const T P2[] = {
  66. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2213976967566192242e+13)),
  67. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5107435206722644429e+11)),
  68. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3600098638603061642e+10)),
  69. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9590439394619619534e+08)),
  70. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6905288611678631510e+06)),
  71. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4566865832663635920e+04)),
  72. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7427031242901594547e+01)),
  73. };
  74. static const T Q2[] = {
  75. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3386146580707264428e+14)),
  76. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4266824419412347550e+12)),
  77. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4015103849971240096e+10)),
  78. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960202770986831075e+08)),
  79. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0669982352539552018e+05)),
  80. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.3030857612070288823e+02)),
  81. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  82. };
  83. static const T P3[] = {
  84. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.0728726905150210443e+15)),
  85. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.7016641869173237784e+14)),
  86. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2829912364088687306e+11)),
  87. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9363051266772083678e+11)),
  88. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1958827170518100757e+09)),
  89. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0085539923498211426e+07)),
  90. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1363534169313901632e+04)),
  91. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7439661319197499338e+01)),
  92. };
  93. static const T Q3[] = {
  94. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4563724628846457519e+17)),
  95. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9272425569640309819e+15)),
  96. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2598377924042897629e+13)),
  97. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6926121104209825246e+10)),
  98. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4727219475672302327e+08)),
  99. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3924739209768057030e+05)),
  100. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.7903362168128450017e+02)),
  101. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  102. };
  103. static const T PC[] = {
  104. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)),
  105. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)),
  106. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)),
  107. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)),
  108. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)),
  109. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)),
  110. };
  111. static const T QC[] = {
  112. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)),
  113. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)),
  114. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)),
  115. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)),
  116. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)),
  117. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  118. };
  119. static const T PS[] = {
  120. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)),
  121. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)),
  122. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)),
  123. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)),
  124. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)),
  125. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)),
  126. };
  127. static const T QS[] = {
  128. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)),
  129. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)),
  130. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)),
  131. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)),
  132. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)),
  133. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  134. };
  135. static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.9357696627916752158e-01)),
  136. x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9576784193148578684e+00)),
  137. x3 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0860510603017726976e+00)),
  138. x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.280e+02)),
  139. x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9519662791675215849e-03)),
  140. x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0130e+03)),
  141. x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4716931485786837568e-04)),
  142. x31 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8140e+03)),
  143. x32 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1356030177269762362e-04))
  144. ;
  145. T value, factor, r, rc, rs;
  146. BOOST_MATH_STD_USING
  147. using namespace boost::math::tools;
  148. using namespace boost::math::constants;
  149. static const char* function = "boost::math::bessel_y0<%1%>(%1%,%1%)";
  150. if (x < 0)
  151. {
  152. return policies::raise_domain_error<T>(function,
  153. "Got x = %1% but x must be non-negative, complex result not supported.", x, pol);
  154. }
  155. if (x == 0)
  156. {
  157. return -policies::raise_overflow_error<T>(function, 0, pol);
  158. }
  159. if (x <= 3) // x in (0, 3]
  160. {
  161. T y = x * x;
  162. T z = 2 * log(x/x1) * bessel_j0(x) / pi<T>();
  163. r = evaluate_rational(P1, Q1, y);
  164. factor = (x + x1) * ((x - x11/256) - x12);
  165. value = z + factor * r;
  166. }
  167. else if (x <= 5.5f) // x in (3, 5.5]
  168. {
  169. T y = x * x;
  170. T z = 2 * log(x/x2) * bessel_j0(x) / pi<T>();
  171. r = evaluate_rational(P2, Q2, y);
  172. factor = (x + x2) * ((x - x21/256) - x22);
  173. value = z + factor * r;
  174. }
  175. else if (x <= 8) // x in (5.5, 8]
  176. {
  177. T y = x * x;
  178. T z = 2 * log(x/x3) * bessel_j0(x) / pi<T>();
  179. r = evaluate_rational(P3, Q3, y);
  180. factor = (x + x3) * ((x - x31/256) - x32);
  181. value = z + factor * r;
  182. }
  183. else // x in (8, \infty)
  184. {
  185. T y = 8 / x;
  186. T y2 = y * y;
  187. rc = evaluate_rational(PC, QC, y2);
  188. rs = evaluate_rational(PS, QS, y2);
  189. factor = constants::one_div_root_pi<T>() / sqrt(x);
  190. //
  191. // The following code is really just:
  192. //
  193. // T z = x - 0.25f * pi<T>();
  194. // value = factor * (rc * sin(z) + y * rs * cos(z));
  195. //
  196. // But using the sin/cos addition formulae and constant values for
  197. // sin/cos of PI/4 which then cancel part of the "factor" term as they're all
  198. // 1 / sqrt(2):
  199. //
  200. T sx = sin(x);
  201. T cx = cos(x);
  202. value = factor * (rc * (sx - cx) + y * rs * (cx + sx));
  203. }
  204. return value;
  205. }
  206. }}} // namespaces
  207. #endif // BOOST_MATH_BESSEL_Y0_HPP