bessel_y1.hpp 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_BESSEL_Y1_HPP
  6. #define BOOST_MATH_BESSEL_Y1_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <boost/math/special_functions/detail/bessel_j1.hpp>
  11. #include <boost/math/constants/constants.hpp>
  12. #include <boost/math/tools/rational.hpp>
  13. #include <boost/math/tools/big_constant.hpp>
  14. #include <boost/math/policies/error_handling.hpp>
  15. #include <boost/assert.hpp>
  16. // Bessel function of the second kind of order one
  17. // x <= 8, minimax rational approximations on root-bracketing intervals
  18. // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
  19. namespace boost { namespace math { namespace detail{
  20. template <typename T, typename Policy>
  21. T bessel_y1(T x, const Policy&);
  22. template <class T, class Policy>
  23. struct bessel_y1_initializer
  24. {
  25. struct init
  26. {
  27. init()
  28. {
  29. do_init();
  30. }
  31. static void do_init()
  32. {
  33. bessel_y1(T(1), Policy());
  34. }
  35. void force_instantiate()const{}
  36. };
  37. static const init initializer;
  38. static void force_instantiate()
  39. {
  40. initializer.force_instantiate();
  41. }
  42. };
  43. template <class T, class Policy>
  44. const typename bessel_y1_initializer<T, Policy>::init bessel_y1_initializer<T, Policy>::initializer;
  45. template <typename T, typename Policy>
  46. T bessel_y1(T x, const Policy& pol)
  47. {
  48. bessel_y1_initializer<T, Policy>::force_instantiate();
  49. static const T P1[] = {
  50. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0535726612579544093e+13)),
  51. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4708611716525426053e+12)),
  52. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.7595974497819597599e+11)),
  53. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2144548214502560419e+09)),
  54. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9157479997408395984e+07)),
  55. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2157953222280260820e+05)),
  56. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1714424660046133456e+02)),
  57. };
  58. static const T Q1[] = {
  59. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0737873921079286084e+14)),
  60. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1272286200406461981e+12)),
  61. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7800352738690585613e+10)),
  62. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2250435122182963220e+08)),
  63. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8136470753052572164e+05)),
  64. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.2079908168393867438e+02)),
  65. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  66. };
  67. static const T P2[] = {
  68. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1514276357909013326e+19)),
  69. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.6808094574724204577e+18)),
  70. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3638408497043134724e+16)),
  71. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0686275289804744814e+15)),
  72. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9530713129741981618e+13)),
  73. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7453673962438488783e+11)),
  74. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1957961912070617006e+09)),
  75. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9153806858264202986e+06)),
  76. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2337180442012953128e+03)),
  77. };
  78. static const T Q2[] = {
  79. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3321844313316185697e+20)),
  80. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.6968198822857178911e+18)),
  81. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0837179548112881950e+16)),
  82. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1187010065856971027e+14)),
  83. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0221766852960403645e+11)),
  84. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.3550318087088919566e+08)),
  85. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0453748201934079734e+06)),
  86. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2855164849321609336e+03)),
  87. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  88. };
  89. static const T PC[] = {
  90. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)),
  91. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)),
  92. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)),
  93. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)),
  94. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)),
  95. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)),
  96. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)),
  97. };
  98. static const T QC[] = {
  99. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)),
  100. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)),
  101. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)),
  102. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)),
  103. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)),
  104. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)),
  105. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  106. };
  107. static const T PS[] = {
  108. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)),
  109. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)),
  110. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)),
  111. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)),
  112. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)),
  113. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)),
  114. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)),
  115. };
  116. static const T QS[] = {
  117. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)),
  118. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)),
  119. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)),
  120. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)),
  121. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)),
  122. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)),
  123. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  124. };
  125. static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1971413260310170351e+00)),
  126. x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4296810407941351328e+00)),
  127. x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.620e+02)),
  128. x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8288260310170351490e-03)),
  129. x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3900e+03)),
  130. x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.4592058648672279948e-06))
  131. ;
  132. T value, factor, r, rc, rs;
  133. BOOST_MATH_STD_USING
  134. using namespace boost::math::tools;
  135. using namespace boost::math::constants;
  136. if (x <= 0)
  137. {
  138. return policies::raise_domain_error<T>("bost::math::bessel_y1<%1%>(%1%,%1%)",
  139. "Got x == %1%, but x must be > 0, complex result not supported.", x, pol);
  140. }
  141. if (x <= 4) // x in (0, 4]
  142. {
  143. T y = x * x;
  144. T z = 2 * log(x/x1) * bessel_j1(x) / pi<T>();
  145. r = evaluate_rational(P1, Q1, y);
  146. factor = (x + x1) * ((x - x11/256) - x12) / x;
  147. value = z + factor * r;
  148. }
  149. else if (x <= 8) // x in (4, 8]
  150. {
  151. T y = x * x;
  152. T z = 2 * log(x/x2) * bessel_j1(x) / pi<T>();
  153. r = evaluate_rational(P2, Q2, y);
  154. factor = (x + x2) * ((x - x21/256) - x22) / x;
  155. value = z + factor * r;
  156. }
  157. else // x in (8, \infty)
  158. {
  159. T y = 8 / x;
  160. T y2 = y * y;
  161. rc = evaluate_rational(PC, QC, y2);
  162. rs = evaluate_rational(PS, QS, y2);
  163. factor = 1 / (sqrt(x) * root_pi<T>());
  164. //
  165. // This code is really just:
  166. //
  167. // T z = x - 0.75f * pi<T>();
  168. // value = factor * (rc * sin(z) + y * rs * cos(z));
  169. //
  170. // But using the sin/cos addition rules, plus constants for sin/cos of 3PI/4
  171. // which then cancel out with corresponding terms in "factor".
  172. //
  173. T sx = sin(x);
  174. T cx = cos(x);
  175. value = factor * (y * rs * (sx - cx) - rc * (sx + cx));
  176. }
  177. return value;
  178. }
  179. }}} // namespaces
  180. #endif // BOOST_MATH_BESSEL_Y1_HPP