expint.hpp 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671
  1. // Copyright John Maddock 2007.
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_EXPINT_HPP
  6. #define BOOST_MATH_EXPINT_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <boost/math/tools/precision.hpp>
  11. #include <boost/math/tools/promotion.hpp>
  12. #include <boost/math/tools/fraction.hpp>
  13. #include <boost/math/tools/series.hpp>
  14. #include <boost/math/policies/error_handling.hpp>
  15. #include <boost/math/special_functions/digamma.hpp>
  16. #include <boost/math/special_functions/log1p.hpp>
  17. #include <boost/math/special_functions/pow.hpp>
  18. namespace boost{ namespace math{
  19. template <class T, class Policy>
  20. inline typename tools::promote_args<T>::type
  21. expint(unsigned n, T z, const Policy& /*pol*/);
  22. namespace detail{
  23. template <class T>
  24. inline T expint_1_rational(const T& z, const mpl::int_<0>&)
  25. {
  26. // this function is never actually called
  27. BOOST_ASSERT(0);
  28. return z;
  29. }
  30. template <class T>
  31. T expint_1_rational(const T& z, const mpl::int_<53>&)
  32. {
  33. BOOST_MATH_STD_USING
  34. T result;
  35. if(z <= 1)
  36. {
  37. // Maximum Deviation Found: 2.006e-18
  38. // Expected Error Term: 2.006e-18
  39. // Max error found at double precision: 2.760e-17
  40. static const T Y = 0.66373538970947265625F;
  41. static const T P[6] = {
  42. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0865197248079397976498),
  43. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0320913665303559189999),
  44. BOOST_MATH_BIG_CONSTANT(T, 53, -0.245088216639761496153),
  45. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0368031736257943745142),
  46. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00399167106081113256961),
  47. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000111507792921197858394)
  48. };
  49. static const T Q[6] = {
  50. BOOST_MATH_BIG_CONSTANT(T, 53, 1),
  51. BOOST_MATH_BIG_CONSTANT(T, 53, 0.37091387659397013215),
  52. BOOST_MATH_BIG_CONSTANT(T, 53, 0.056770677104207528384),
  53. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00427347600017103698101),
  54. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000131049900798434683324),
  55. BOOST_MATH_BIG_CONSTANT(T, 53, -0.528611029520217142048e-6)
  56. };
  57. result = tools::evaluate_polynomial(P, z)
  58. / tools::evaluate_polynomial(Q, z);
  59. result += z - log(z) - Y;
  60. }
  61. else if(z < -boost::math::tools::log_min_value<T>())
  62. {
  63. // Maximum Deviation Found (interpolated): 1.444e-17
  64. // Max error found at double precision: 3.119e-17
  65. static const T P[11] = {
  66. BOOST_MATH_BIG_CONSTANT(T, 53, -0.121013190657725568138e-18),
  67. BOOST_MATH_BIG_CONSTANT(T, 53, -0.999999999999998811143),
  68. BOOST_MATH_BIG_CONSTANT(T, 53, -43.3058660811817946037),
  69. BOOST_MATH_BIG_CONSTANT(T, 53, -724.581482791462469795),
  70. BOOST_MATH_BIG_CONSTANT(T, 53, -6046.8250112711035463),
  71. BOOST_MATH_BIG_CONSTANT(T, 53, -27182.6254466733970467),
  72. BOOST_MATH_BIG_CONSTANT(T, 53, -66598.2652345418633509),
  73. BOOST_MATH_BIG_CONSTANT(T, 53, -86273.1567711649528784),
  74. BOOST_MATH_BIG_CONSTANT(T, 53, -54844.4587226402067411),
  75. BOOST_MATH_BIG_CONSTANT(T, 53, -14751.4895786128450662),
  76. BOOST_MATH_BIG_CONSTANT(T, 53, -1185.45720315201027667)
  77. };
  78. static const T Q[12] = {
  79. BOOST_MATH_BIG_CONSTANT(T, 53, 1),
  80. BOOST_MATH_BIG_CONSTANT(T, 53, 45.3058660811801465927),
  81. BOOST_MATH_BIG_CONSTANT(T, 53, 809.193214954550328455),
  82. BOOST_MATH_BIG_CONSTANT(T, 53, 7417.37624454689546708),
  83. BOOST_MATH_BIG_CONSTANT(T, 53, 38129.5594484818471461),
  84. BOOST_MATH_BIG_CONSTANT(T, 53, 113057.05869159631492),
  85. BOOST_MATH_BIG_CONSTANT(T, 53, 192104.047790227984431),
  86. BOOST_MATH_BIG_CONSTANT(T, 53, 180329.498380501819718),
  87. BOOST_MATH_BIG_CONSTANT(T, 53, 86722.3403467334749201),
  88. BOOST_MATH_BIG_CONSTANT(T, 53, 18455.4124737722049515),
  89. BOOST_MATH_BIG_CONSTANT(T, 53, 1229.20784182403048905),
  90. BOOST_MATH_BIG_CONSTANT(T, 53, -0.776491285282330997549)
  91. };
  92. T recip = 1 / z;
  93. result = 1 + tools::evaluate_polynomial(P, recip)
  94. / tools::evaluate_polynomial(Q, recip);
  95. result *= exp(-z) * recip;
  96. }
  97. else
  98. {
  99. result = 0;
  100. }
  101. return result;
  102. }
  103. template <class T>
  104. T expint_1_rational(const T& z, const mpl::int_<64>&)
  105. {
  106. BOOST_MATH_STD_USING
  107. T result;
  108. if(z <= 1)
  109. {
  110. // Maximum Deviation Found: 3.807e-20
  111. // Expected Error Term: 3.807e-20
  112. // Max error found at long double precision: 6.249e-20
  113. static const T Y = 0.66373538970947265625F;
  114. static const T P[6] = {
  115. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0865197248079397956816),
  116. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0275114007037026844633),
  117. BOOST_MATH_BIG_CONSTANT(T, 64, -0.246594388074877139824),
  118. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0237624819878732642231),
  119. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00259113319641673986276),
  120. BOOST_MATH_BIG_CONSTANT(T, 64, 0.30853660894346057053e-4)
  121. };
  122. static const T Q[7] = {
  123. BOOST_MATH_BIG_CONSTANT(T, 64, 1),
  124. BOOST_MATH_BIG_CONSTANT(T, 64, 0.317978365797784100273),
  125. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0393622602554758722511),
  126. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00204062029115966323229),
  127. BOOST_MATH_BIG_CONSTANT(T, 64, 0.732512107100088047854e-5),
  128. BOOST_MATH_BIG_CONSTANT(T, 64, -0.202872781770207871975e-5),
  129. BOOST_MATH_BIG_CONSTANT(T, 64, 0.52779248094603709945e-7)
  130. };
  131. result = tools::evaluate_polynomial(P, z)
  132. / tools::evaluate_polynomial(Q, z);
  133. result += z - log(z) - Y;
  134. }
  135. else if(z < -boost::math::tools::log_min_value<T>())
  136. {
  137. // Maximum Deviation Found (interpolated): 2.220e-20
  138. // Max error found at long double precision: 1.346e-19
  139. static const T P[14] = {
  140. BOOST_MATH_BIG_CONSTANT(T, 64, -0.534401189080684443046e-23),
  141. BOOST_MATH_BIG_CONSTANT(T, 64, -0.999999999999999999905),
  142. BOOST_MATH_BIG_CONSTANT(T, 64, -62.1517806091379402505),
  143. BOOST_MATH_BIG_CONSTANT(T, 64, -1568.45688271895145277),
  144. BOOST_MATH_BIG_CONSTANT(T, 64, -21015.3431990874009619),
  145. BOOST_MATH_BIG_CONSTANT(T, 64, -164333.011755931661949),
  146. BOOST_MATH_BIG_CONSTANT(T, 64, -777917.270775426696103),
  147. BOOST_MATH_BIG_CONSTANT(T, 64, -2244188.56195255112937),
  148. BOOST_MATH_BIG_CONSTANT(T, 64, -3888702.98145335643429),
  149. BOOST_MATH_BIG_CONSTANT(T, 64, -3909822.65621952648353),
  150. BOOST_MATH_BIG_CONSTANT(T, 64, -2149033.9538897398457),
  151. BOOST_MATH_BIG_CONSTANT(T, 64, -584705.537139793925189),
  152. BOOST_MATH_BIG_CONSTANT(T, 64, -65815.2605361889477244),
  153. BOOST_MATH_BIG_CONSTANT(T, 64, -2038.82870680427258038)
  154. };
  155. static const T Q[14] = {
  156. BOOST_MATH_BIG_CONSTANT(T, 64, 1),
  157. BOOST_MATH_BIG_CONSTANT(T, 64, 64.1517806091379399478),
  158. BOOST_MATH_BIG_CONSTANT(T, 64, 1690.76044393722763785),
  159. BOOST_MATH_BIG_CONSTANT(T, 64, 24035.9534033068949426),
  160. BOOST_MATH_BIG_CONSTANT(T, 64, 203679.998633572361706),
  161. BOOST_MATH_BIG_CONSTANT(T, 64, 1074661.58459976978285),
  162. BOOST_MATH_BIG_CONSTANT(T, 64, 3586552.65020899358773),
  163. BOOST_MATH_BIG_CONSTANT(T, 64, 7552186.84989547621411),
  164. BOOST_MATH_BIG_CONSTANT(T, 64, 9853333.79353054111434),
  165. BOOST_MATH_BIG_CONSTANT(T, 64, 7689642.74550683631258),
  166. BOOST_MATH_BIG_CONSTANT(T, 64, 3385553.35146759180739),
  167. BOOST_MATH_BIG_CONSTANT(T, 64, 763218.072732396428725),
  168. BOOST_MATH_BIG_CONSTANT(T, 64, 73930.2995984054930821),
  169. BOOST_MATH_BIG_CONSTANT(T, 64, 2063.86994219629165937)
  170. };
  171. T recip = 1 / z;
  172. result = 1 + tools::evaluate_polynomial(P, recip)
  173. / tools::evaluate_polynomial(Q, recip);
  174. result *= exp(-z) * recip;
  175. }
  176. else
  177. {
  178. result = 0;
  179. }
  180. return result;
  181. }
  182. template <class T>
  183. T expint_1_rational(const T& z, const mpl::int_<113>&)
  184. {
  185. BOOST_MATH_STD_USING
  186. T result;
  187. if(z <= 1)
  188. {
  189. // Maximum Deviation Found: 2.477e-35
  190. // Expected Error Term: 2.477e-35
  191. // Max error found at long double precision: 6.810e-35
  192. static const T Y = 0.66373538970947265625F;
  193. static const T P[10] = {
  194. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0865197248079397956434879099175975937),
  195. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0369066175910795772830865304506087759),
  196. BOOST_MATH_BIG_CONSTANT(T, 113, -0.24272036838415474665971599314725545),
  197. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0502166331248948515282379137550178307),
  198. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00768384138547489410285101483730424919),
  199. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000612574337702109683505224915484717162),
  200. BOOST_MATH_BIG_CONSTANT(T, 113, -0.380207107950635046971492617061708534e-4),
  201. BOOST_MATH_BIG_CONSTANT(T, 113, -0.136528159460768830763009294683628406e-5),
  202. BOOST_MATH_BIG_CONSTANT(T, 113, -0.346839106212658259681029388908658618e-7),
  203. BOOST_MATH_BIG_CONSTANT(T, 113, -0.340500302777838063940402160594523429e-9)
  204. };
  205. static const T Q[10] = {
  206. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  207. BOOST_MATH_BIG_CONSTANT(T, 113, 0.426568827778942588160423015589537302),
  208. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0841384046470893490592450881447510148),
  209. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0100557215850668029618957359471132995),
  210. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000799334870474627021737357294799839363),
  211. BOOST_MATH_BIG_CONSTANT(T, 113, 0.434452090903862735242423068552687688e-4),
  212. BOOST_MATH_BIG_CONSTANT(T, 113, 0.15829674748799079874182885081231252e-5),
  213. BOOST_MATH_BIG_CONSTANT(T, 113, 0.354406206738023762100882270033082198e-7),
  214. BOOST_MATH_BIG_CONSTANT(T, 113, 0.369373328141051577845488477377890236e-9),
  215. BOOST_MATH_BIG_CONSTANT(T, 113, -0.274149801370933606409282434677600112e-12)
  216. };
  217. result = tools::evaluate_polynomial(P, z)
  218. / tools::evaluate_polynomial(Q, z);
  219. result += z - log(z) - Y;
  220. }
  221. else if(z <= 4)
  222. {
  223. // Max error in interpolated form: 5.614e-35
  224. // Max error found at long double precision: 7.979e-35
  225. static const T Y = 0.70190334320068359375F;
  226. static const T P[16] = {
  227. BOOST_MATH_BIG_CONSTANT(T, 113, 0.298096656795020369955077350585959794),
  228. BOOST_MATH_BIG_CONSTANT(T, 113, 12.9314045995266142913135497455971247),
  229. BOOST_MATH_BIG_CONSTANT(T, 113, 226.144334921582637462526628217345501),
  230. BOOST_MATH_BIG_CONSTANT(T, 113, 2070.83670924261732722117682067381405),
  231. BOOST_MATH_BIG_CONSTANT(T, 113, 10715.1115684330959908244769731347186),
  232. BOOST_MATH_BIG_CONSTANT(T, 113, 30728.7876355542048019664777316053311),
  233. BOOST_MATH_BIG_CONSTANT(T, 113, 38520.6078609349855436936232610875297),
  234. BOOST_MATH_BIG_CONSTANT(T, 113, -27606.0780981527583168728339620565165),
  235. BOOST_MATH_BIG_CONSTANT(T, 113, -169026.485055785605958655247592604835),
  236. BOOST_MATH_BIG_CONSTANT(T, 113, -254361.919204983608659069868035092282),
  237. BOOST_MATH_BIG_CONSTANT(T, 113, -195765.706874132267953259272028679935),
  238. BOOST_MATH_BIG_CONSTANT(T, 113, -83352.6826013533205474990119962408675),
  239. BOOST_MATH_BIG_CONSTANT(T, 113, -19251.6828496869586415162597993050194),
  240. BOOST_MATH_BIG_CONSTANT(T, 113, -2226.64251774578542836725386936102339),
  241. BOOST_MATH_BIG_CONSTANT(T, 113, -109.009437301400845902228611986479816),
  242. BOOST_MATH_BIG_CONSTANT(T, 113, -1.51492042209561411434644938098833499)
  243. };
  244. static const T Q[16] = {
  245. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  246. BOOST_MATH_BIG_CONSTANT(T, 113, 46.734521442032505570517810766704587),
  247. BOOST_MATH_BIG_CONSTANT(T, 113, 908.694714348462269000247450058595655),
  248. BOOST_MATH_BIG_CONSTANT(T, 113, 9701.76053033673927362784882748513195),
  249. BOOST_MATH_BIG_CONSTANT(T, 113, 63254.2815292641314236625196594947774),
  250. BOOST_MATH_BIG_CONSTANT(T, 113, 265115.641285880437335106541757711092),
  251. BOOST_MATH_BIG_CONSTANT(T, 113, 732707.841188071900498536533086567735),
  252. BOOST_MATH_BIG_CONSTANT(T, 113, 1348514.02492635723327306628712057794),
  253. BOOST_MATH_BIG_CONSTANT(T, 113, 1649986.81455283047769673308781585991),
  254. BOOST_MATH_BIG_CONSTANT(T, 113, 1326000.828522976970116271208812099),
  255. BOOST_MATH_BIG_CONSTANT(T, 113, 683643.09490612171772350481773951341),
  256. BOOST_MATH_BIG_CONSTANT(T, 113, 217640.505137263607952365685653352229),
  257. BOOST_MATH_BIG_CONSTANT(T, 113, 40288.3467237411710881822569476155485),
  258. BOOST_MATH_BIG_CONSTANT(T, 113, 3932.89353979531632559232883283175754),
  259. BOOST_MATH_BIG_CONSTANT(T, 113, 169.845369689596739824177412096477219),
  260. BOOST_MATH_BIG_CONSTANT(T, 113, 2.17607292280092201170768401876895354)
  261. };
  262. T recip = 1 / z;
  263. result = Y + tools::evaluate_polynomial(P, recip)
  264. / tools::evaluate_polynomial(Q, recip);
  265. result *= exp(-z) * recip;
  266. }
  267. else if(z < -boost::math::tools::log_min_value<T>())
  268. {
  269. // Max error in interpolated form: 4.413e-35
  270. // Max error found at long double precision: 8.928e-35
  271. static const T P[19] = {
  272. BOOST_MATH_BIG_CONSTANT(T, 113, -0.559148411832951463689610809550083986e-40),
  273. BOOST_MATH_BIG_CONSTANT(T, 113, -0.999999999999999999999999999999999997),
  274. BOOST_MATH_BIG_CONSTANT(T, 113, -166.542326331163836642960118190147367),
  275. BOOST_MATH_BIG_CONSTANT(T, 113, -12204.639128796330005065904675153652),
  276. BOOST_MATH_BIG_CONSTANT(T, 113, -520807.069767086071806275022036146855),
  277. BOOST_MATH_BIG_CONSTANT(T, 113, -14435981.5242137970691490903863125326),
  278. BOOST_MATH_BIG_CONSTANT(T, 113, -274574945.737064301247496460758654196),
  279. BOOST_MATH_BIG_CONSTANT(T, 113, -3691611582.99810039356254671781473079),
  280. BOOST_MATH_BIG_CONSTANT(T, 113, -35622515944.8255047299363690814678763),
  281. BOOST_MATH_BIG_CONSTANT(T, 113, -248040014774.502043161750715548451142),
  282. BOOST_MATH_BIG_CONSTANT(T, 113, -1243190389769.53458416330946622607913),
  283. BOOST_MATH_BIG_CONSTANT(T, 113, -4441730126135.54739052731990368425339),
  284. BOOST_MATH_BIG_CONSTANT(T, 113, -11117043181899.7388524310281751971366),
  285. BOOST_MATH_BIG_CONSTANT(T, 113, -18976497615396.9717776601813519498961),
  286. BOOST_MATH_BIG_CONSTANT(T, 113, -21237496819711.1011661104761906067131),
  287. BOOST_MATH_BIG_CONSTANT(T, 113, -14695899122092.5161620333466757812848),
  288. BOOST_MATH_BIG_CONSTANT(T, 113, -5737221535080.30569711574295785864903),
  289. BOOST_MATH_BIG_CONSTANT(T, 113, -1077042281708.42654526404581272546244),
  290. BOOST_MATH_BIG_CONSTANT(T, 113, -68028222642.1941480871395695677675137)
  291. };
  292. static const T Q[20] = {
  293. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  294. BOOST_MATH_BIG_CONSTANT(T, 113, 168.542326331163836642960118190147311),
  295. BOOST_MATH_BIG_CONSTANT(T, 113, 12535.7237814586576783518249115343619),
  296. BOOST_MATH_BIG_CONSTANT(T, 113, 544891.263372016404143120911148640627),
  297. BOOST_MATH_BIG_CONSTANT(T, 113, 15454474.7241010258634446523045237762),
  298. BOOST_MATH_BIG_CONSTANT(T, 113, 302495899.896629522673410325891717381),
  299. BOOST_MATH_BIG_CONSTANT(T, 113, 4215565948.38886507646911672693270307),
  300. BOOST_MATH_BIG_CONSTANT(T, 113, 42552409471.7951815668506556705733344),
  301. BOOST_MATH_BIG_CONSTANT(T, 113, 313592377066.753173979584098301610186),
  302. BOOST_MATH_BIG_CONSTANT(T, 113, 1688763640223.4541980740597514904542),
  303. BOOST_MATH_BIG_CONSTANT(T, 113, 6610992294901.59589748057620192145704),
  304. BOOST_MATH_BIG_CONSTANT(T, 113, 18601637235659.6059890851321772682606),
  305. BOOST_MATH_BIG_CONSTANT(T, 113, 36944278231087.2571020964163402941583),
  306. BOOST_MATH_BIG_CONSTANT(T, 113, 50425858518481.7497071917028793820058),
  307. BOOST_MATH_BIG_CONSTANT(T, 113, 45508060902865.0899967797848815980644),
  308. BOOST_MATH_BIG_CONSTANT(T, 113, 25649955002765.3817331501988304758142),
  309. BOOST_MATH_BIG_CONSTANT(T, 113, 8259575619094.6518520988612711292331),
  310. BOOST_MATH_BIG_CONSTANT(T, 113, 1299981487496.12607474362723586264515),
  311. BOOST_MATH_BIG_CONSTANT(T, 113, 70242279152.8241187845178443118302693),
  312. BOOST_MATH_BIG_CONSTANT(T, 113, -37633302.9409263839042721539363416685)
  313. };
  314. T recip = 1 / z;
  315. result = 1 + tools::evaluate_polynomial(P, recip)
  316. / tools::evaluate_polynomial(Q, recip);
  317. result *= exp(-z) * recip;
  318. }
  319. else
  320. {
  321. result = 0;
  322. }
  323. return result;
  324. }
  325. template <class T>
  326. struct expint_fraction
  327. {
  328. typedef std::pair<T,T> result_type;
  329. expint_fraction(unsigned n_, T z_) : b(n_ + z_), i(-1), n(n_){}
  330. std::pair<T,T> operator()()
  331. {
  332. std::pair<T,T> result = std::make_pair(-static_cast<T>((i+1) * (n+i)), b);
  333. b += 2;
  334. ++i;
  335. return result;
  336. }
  337. private:
  338. T b;
  339. int i;
  340. unsigned n;
  341. };
  342. template <class T, class Policy>
  343. inline T expint_as_fraction(unsigned n, T z, const Policy& pol)
  344. {
  345. BOOST_MATH_STD_USING
  346. BOOST_MATH_INSTRUMENT_VARIABLE(z)
  347. boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
  348. expint_fraction<T> f(n, z);
  349. T result = tools::continued_fraction_b(
  350. f,
  351. boost::math::policies::get_epsilon<T, Policy>(),
  352. max_iter);
  353. policies::check_series_iterations<T>("boost::math::expint_continued_fraction<%1%>(unsigned,%1%)", max_iter, pol);
  354. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  355. BOOST_MATH_INSTRUMENT_VARIABLE(max_iter)
  356. result = exp(-z) / result;
  357. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  358. return result;
  359. }
  360. template <class T>
  361. struct expint_series
  362. {
  363. typedef T result_type;
  364. expint_series(unsigned k_, T z_, T x_k_, T denom_, T fact_)
  365. : k(k_), z(z_), x_k(x_k_), denom(denom_), fact(fact_){}
  366. T operator()()
  367. {
  368. x_k *= -z;
  369. denom += 1;
  370. fact *= ++k;
  371. return x_k / (denom * fact);
  372. }
  373. private:
  374. unsigned k;
  375. T z;
  376. T x_k;
  377. T denom;
  378. T fact;
  379. };
  380. template <class T, class Policy>
  381. inline T expint_as_series(unsigned n, T z, const Policy& pol)
  382. {
  383. BOOST_MATH_STD_USING
  384. boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
  385. BOOST_MATH_INSTRUMENT_VARIABLE(z)
  386. T result = 0;
  387. T x_k = -1;
  388. T denom = T(1) - n;
  389. T fact = 1;
  390. unsigned k = 0;
  391. for(; k < n - 1;)
  392. {
  393. result += x_k / (denom * fact);
  394. denom += 1;
  395. x_k *= -z;
  396. fact *= ++k;
  397. }
  398. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  399. result += pow(-z, static_cast<T>(n - 1))
  400. * (boost::math::digamma(static_cast<T>(n)) - log(z)) / fact;
  401. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  402. expint_series<T> s(k, z, x_k, denom, fact);
  403. result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, result);
  404. policies::check_series_iterations<T>("boost::math::expint_series<%1%>(unsigned,%1%)", max_iter, pol);
  405. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  406. BOOST_MATH_INSTRUMENT_VARIABLE(max_iter)
  407. return result;
  408. }
  409. template <class T, class Policy, class Tag>
  410. T expint_imp(unsigned n, T z, const Policy& pol, const Tag& tag)
  411. {
  412. BOOST_MATH_STD_USING
  413. static const char* function = "boost::math::expint<%1%>(unsigned, %1%)";
  414. if(z < 0)
  415. return policies::raise_domain_error<T>(function, "Function requires z >= 0 but got %1%.", z, pol);
  416. if(z == 0)
  417. return n == 1 ? policies::raise_overflow_error<T>(function, 0, pol) : T(1 / (static_cast<T>(n - 1)));
  418. T result;
  419. bool f;
  420. if(n < 3)
  421. {
  422. f = z < 0.5;
  423. }
  424. else
  425. {
  426. f = z < (static_cast<T>(n - 2) / static_cast<T>(n - 1));
  427. }
  428. #ifdef BOOST_MSVC
  429. # pragma warning(push)
  430. # pragma warning(disable:4127) // conditional expression is constant
  431. #endif
  432. if(n == 0)
  433. result = exp(-z) / z;
  434. else if((n == 1) && (Tag::value))
  435. {
  436. result = expint_1_rational(z, tag);
  437. }
  438. else if(f)
  439. result = expint_as_series(n, z, pol);
  440. else
  441. result = expint_as_fraction(n, z, pol);
  442. #ifdef BOOST_MSVC
  443. # pragma warning(pop)
  444. #endif
  445. return result;
  446. }
  447. template <class T>
  448. struct expint_i_series
  449. {
  450. typedef T result_type;
  451. expint_i_series(T z_) : k(0), z_k(1), z(z_){}
  452. T operator()()
  453. {
  454. z_k *= z / ++k;
  455. return z_k / k;
  456. }
  457. private:
  458. unsigned k;
  459. T z_k;
  460. T z;
  461. };
  462. template <class T, class Policy>
  463. T expint_i_as_series(T z, const Policy& pol)
  464. {
  465. BOOST_MATH_STD_USING
  466. T result = log(z); // (log(z) - log(1 / z)) / 2;
  467. result += constants::euler<T>();
  468. expint_i_series<T> s(z);
  469. boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
  470. result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, result);
  471. policies::check_series_iterations<T>("boost::math::expint_i_series<%1%>(%1%)", max_iter, pol);
  472. return result;
  473. }
  474. template <class T, class Policy, class Tag>
  475. T expint_i_imp(T z, const Policy& pol, const Tag& tag)
  476. {
  477. static const char* function = "boost::math::expint<%1%>(%1%)";
  478. if(z < 0)
  479. return -expint_imp(1, T(-z), pol, tag);
  480. if(z == 0)
  481. return -policies::raise_overflow_error<T>(function, 0, pol);
  482. return expint_i_as_series(z, pol);
  483. }
  484. template <class T, class Policy>
  485. T expint_i_imp(T z, const Policy& pol, const mpl::int_<53>& tag)
  486. {
  487. BOOST_MATH_STD_USING
  488. static const char* function = "boost::math::expint<%1%>(%1%)";
  489. if(z < 0)
  490. return -expint_imp(1, T(-z), pol, tag);
  491. if(z == 0)
  492. return -policies::raise_overflow_error<T>(function, 0, pol);
  493. T result;
  494. if(z <= 6)
  495. {
  496. // Maximum Deviation Found: 2.852e-18
  497. // Expected Error Term: 2.852e-18
  498. // Max Error found at double precision = Poly: 2.636335e-16 Cheb: 4.187027e-16
  499. static const T P[10] = {
  500. BOOST_MATH_BIG_CONSTANT(T, 53, 2.98677224343598593013),
  501. BOOST_MATH_BIG_CONSTANT(T, 53, 0.356343618769377415068),
  502. BOOST_MATH_BIG_CONSTANT(T, 53, 0.780836076283730801839),
  503. BOOST_MATH_BIG_CONSTANT(T, 53, 0.114670926327032002811),
  504. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0499434773576515260534),
  505. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00726224593341228159561),
  506. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00115478237227804306827),
  507. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000116419523609765200999),
  508. BOOST_MATH_BIG_CONSTANT(T, 53, 0.798296365679269702435e-5),
  509. BOOST_MATH_BIG_CONSTANT(T, 53, 0.2777056254402008721e-6)
  510. };
  511. static const T Q[8] = {
  512. BOOST_MATH_BIG_CONSTANT(T, 53, 1),
  513. BOOST_MATH_BIG_CONSTANT(T, 53, -1.17090412365413911947),
  514. BOOST_MATH_BIG_CONSTANT(T, 53, 0.62215109846016746276),
  515. BOOST_MATH_BIG_CONSTANT(T, 53, -0.195114782069495403315),
  516. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0391523431392967238166),
  517. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00504800158663705747345),
  518. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000389034007436065401822),
  519. BOOST_MATH_BIG_CONSTANT(T, 53, -0.138972589601781706598e-4)
  520. };
  521. static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 53, 1677624236387711.0);
  522. static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 53, 4503599627370496.0);
  523. static const T r1 = static_cast<T>(c1 / c2);
  524. static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 53, 0.131401834143860282009280387409357165515556574352422001206362e-16);
  525. static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 53, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
  526. T t = (z / 3) - 1;
  527. result = tools::evaluate_polynomial(P, t)
  528. / tools::evaluate_polynomial(Q, t);
  529. t = (z - r1) - r2;
  530. result *= t;
  531. if(fabs(t) < 0.1)
  532. {
  533. result += boost::math::log1p(t / r);
  534. }
  535. else
  536. {
  537. result += log(z / r);
  538. }
  539. }
  540. else if (z <= 10)
  541. {
  542. // Maximum Deviation Found: 6.546e-17
  543. // Expected Error Term: 6.546e-17
  544. // Max Error found at double precision = Poly: 6.890169e-17 Cheb: 6.772128e-17
  545. static const T Y = 1.158985137939453125F;
  546. static const T P[8] = {
  547. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00139324086199402804173),
  548. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0349921221823888744966),
  549. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0264095520754134848538),
  550. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00761224003005476438412),
  551. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00247496209592143627977),
  552. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000374885917942100256775),
  553. BOOST_MATH_BIG_CONSTANT(T, 53, -0.554086272024881826253e-4),
  554. BOOST_MATH_BIG_CONSTANT(T, 53, -0.396487648924804510056e-5)
  555. };
  556. static const T Q[8] = {
  557. BOOST_MATH_BIG_CONSTANT(T, 53, 1),
  558. BOOST_MATH_BIG_CONSTANT(T, 53, 0.744625566823272107711),
  559. BOOST_MATH_BIG_CONSTANT(T, 53, 0.329061095011767059236),
  560. BOOST_MATH_BIG_CONSTANT(T, 53, 0.100128624977313872323),
  561. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0223851099128506347278),
  562. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00365334190742316650106),
  563. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000402453408512476836472),
  564. BOOST_MATH_BIG_CONSTANT(T, 53, 0.263649630720255691787e-4)
  565. };
  566. T t = z / 2 - 4;
  567. result = Y + tools::evaluate_polynomial(P, t)
  568. / tools::evaluate_polynomial(Q, t);
  569. result *= exp(z) / z;
  570. result += z;
  571. }
  572. else if(z <= 20)
  573. {
  574. // Maximum Deviation Found: 1.843e-17
  575. // Expected Error Term: -1.842e-17
  576. // Max Error found at double precision = Poly: 4.375868e-17 Cheb: 5.860967e-17
  577. static const T Y = 1.0869731903076171875F;
  578. static const T P[9] = {
  579. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00893891094356945667451),
  580. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0484607730127134045806),
  581. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0652810444222236895772),
  582. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0478447572647309671455),
  583. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0226059218923777094596),
  584. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00720603636917482065907),
  585. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00155941947035972031334),
  586. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000209750022660200888349),
  587. BOOST_MATH_BIG_CONSTANT(T, 53, -0.138652200349182596186e-4)
  588. };
  589. static const T Q[9] = {
  590. BOOST_MATH_BIG_CONSTANT(T, 53, 1),
  591. BOOST_MATH_BIG_CONSTANT(T, 53, 1.97017214039061194971),
  592. BOOST_MATH_BIG_CONSTANT(T, 53, 1.86232465043073157508),
  593. BOOST_MATH_BIG_CONSTANT(T, 53, 1.09601437090337519977),
  594. BOOST_MATH_BIG_CONSTANT(T, 53, 0.438873285773088870812),
  595. BOOST_MATH_BIG_CONSTANT(T, 53, 0.122537731979686102756),
  596. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0233458478275769288159),
  597. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00278170769163303669021),
  598. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000159150281166108755531)
  599. };
  600. T t = z / 5 - 3;
  601. result = Y + tools::evaluate_polynomial(P, t)
  602. / tools::evaluate_polynomial(Q, t);
  603. result *= exp(z) / z;
  604. result += z;
  605. }
  606. else if(z <= 40)
  607. {
  608. // Maximum Deviation Found: 5.102e-18
  609. // Expected Error Term: 5.101e-18
  610. // Max Error found at double precision = Poly: 1.441088e-16 Cheb: 1.864792e-16
  611. static const T Y = 1.03937530517578125F;
  612. static const T P[9] = {
  613. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00356165148914447597995),
  614. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0229930320357982333406),
  615. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0449814350482277917716),
  616. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0453759383048193402336),
  617. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0272050837209380717069),
  618. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00994403059883350813295),
  619. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00207592267812291726961),
  620. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000192178045857733706044),
  621. BOOST_MATH_BIG_CONSTANT(T, 53, -0.113161784705911400295e-9)
  622. };
  623. static const T Q[9] = {
  624. BOOST_MATH_BIG_CONSTANT(T, 53, 1),
  625. BOOST_MATH_BIG_CONSTANT(T, 53, 2.84354408840148561131),
  626. BOOST_MATH_BIG_CONSTANT(T, 53, 3.6599610090072393012),
  627. BOOST_MATH_BIG_CONSTANT(T, 53, 2.75088464344293083595),
  628. BOOST_MATH_BIG_CONSTANT(T, 53, 1.2985244073998398643),
  629. BOOST_MATH_BIG_CONSTANT(T, 53, 0.383213198510794507409),
  630. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0651165455496281337831),
  631. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00488071077519227853585)
  632. };
  633. T t = z / 10 - 3;
  634. result = Y + tools::evaluate_polynomial(P, t)
  635. / tools::evaluate_polynomial(Q, t);
  636. result *= exp(z) / z;
  637. result += z;
  638. }
  639. else
  640. {
  641. // Max Error found at double precision = 3.381886e-17
  642. static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 53, 2.35385266837019985407899910749034804508871617254555467236651e17));
  643. static const T Y= 1.013065338134765625F;
  644. static const T P[6] = {
  645. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0130653381347656243849),
  646. BOOST_MATH_BIG_CONSTANT(T, 53, 0.19029710559486576682),
  647. BOOST_MATH_BIG_CONSTANT(T, 53, 94.7365094537197236011),
  648. BOOST_MATH_BIG_CONSTANT(T, 53, -2516.35323679844256203),
  649. BOOST_MATH_BIG_CONSTANT(T, 53, 18932.0850014925993025),
  650. BOOST_MATH_BIG_CONSTANT(T, 53, -38703.1431362056714134)
  651. };
  652. static const T Q[7] = {
  653. BOOST_MATH_BIG_CONSTANT(T, 53, 1),
  654. BOOST_MATH_BIG_CONSTANT(T, 53, 61.9733592849439884145),
  655. BOOST_MATH_BIG_CONSTANT(T, 53, -2354.56211323420194283),
  656. BOOST_MATH_BIG_CONSTANT(T, 53, 22329.1459489893079041),
  657. BOOST_MATH_BIG_CONSTANT(T, 53, -70126.245140396567133),
  658. BOOST_MATH_BIG_CONSTANT(T, 53, 54738.2833147775537106),
  659. BOOST_MATH_BIG_CONSTANT(T, 53, 8297.16296356518409347)
  660. };
  661. T t = 1 / z;
  662. result = Y + tools::evaluate_polynomial(P, t)
  663. / tools::evaluate_polynomial(Q, t);
  664. if(z < 41)
  665. result *= exp(z) / z;
  666. else
  667. {
  668. // Avoid premature overflow if we can:
  669. t = z - 40;
  670. if(t > tools::log_max_value<T>())
  671. {
  672. result = policies::raise_overflow_error<T>(function, 0, pol);
  673. }
  674. else
  675. {
  676. result *= exp(z - 40) / z;
  677. if(result > tools::max_value<T>() / exp40)
  678. {
  679. result = policies::raise_overflow_error<T>(function, 0, pol);
  680. }
  681. else
  682. {
  683. result *= exp40;
  684. }
  685. }
  686. }
  687. result += z;
  688. }
  689. return result;
  690. }
  691. template <class T, class Policy>
  692. T expint_i_imp(T z, const Policy& pol, const mpl::int_<64>& tag)
  693. {
  694. BOOST_MATH_STD_USING
  695. static const char* function = "boost::math::expint<%1%>(%1%)";
  696. if(z < 0)
  697. return -expint_imp(1, T(-z), pol, tag);
  698. if(z == 0)
  699. return -policies::raise_overflow_error<T>(function, 0, pol);
  700. T result;
  701. if(z <= 6)
  702. {
  703. // Maximum Deviation Found: 3.883e-21
  704. // Expected Error Term: 3.883e-21
  705. // Max Error found at long double precision = Poly: 3.344801e-19 Cheb: 4.989937e-19
  706. static const T P[11] = {
  707. BOOST_MATH_BIG_CONSTANT(T, 64, 2.98677224343598593764),
  708. BOOST_MATH_BIG_CONSTANT(T, 64, 0.25891613550886736592),
  709. BOOST_MATH_BIG_CONSTANT(T, 64, 0.789323584998672832285),
  710. BOOST_MATH_BIG_CONSTANT(T, 64, 0.092432587824602399339),
  711. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0514236978728625906656),
  712. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00658477469745132977921),
  713. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00124914538197086254233),
  714. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000131429679565472408551),
  715. BOOST_MATH_BIG_CONSTANT(T, 64, 0.11293331317982763165e-4),
  716. BOOST_MATH_BIG_CONSTANT(T, 64, 0.629499283139417444244e-6),
  717. BOOST_MATH_BIG_CONSTANT(T, 64, 0.177833045143692498221e-7)
  718. };
  719. static const T Q[9] = {
  720. BOOST_MATH_BIG_CONSTANT(T, 64, 1),
  721. BOOST_MATH_BIG_CONSTANT(T, 64, -1.20352377969742325748),
  722. BOOST_MATH_BIG_CONSTANT(T, 64, 0.66707904942606479811),
  723. BOOST_MATH_BIG_CONSTANT(T, 64, -0.223014531629140771914),
  724. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0493340022262908008636),
  725. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00741934273050807310677),
  726. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00074353567782087939294),
  727. BOOST_MATH_BIG_CONSTANT(T, 64, -0.455861727069603367656e-4),
  728. BOOST_MATH_BIG_CONSTANT(T, 64, 0.131515429329812837701e-5)
  729. };
  730. static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 64, 1677624236387711.0);
  731. static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 64, 4503599627370496.0);
  732. static const T r1 = c1 / c2;
  733. static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 64, 0.131401834143860282009280387409357165515556574352422001206362e-16);
  734. static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
  735. T t = (z / 3) - 1;
  736. result = tools::evaluate_polynomial(P, t)
  737. / tools::evaluate_polynomial(Q, t);
  738. t = (z - r1) - r2;
  739. result *= t;
  740. if(fabs(t) < 0.1)
  741. {
  742. result += boost::math::log1p(t / r);
  743. }
  744. else
  745. {
  746. result += log(z / r);
  747. }
  748. }
  749. else if (z <= 10)
  750. {
  751. // Maximum Deviation Found: 2.622e-21
  752. // Expected Error Term: -2.622e-21
  753. // Max Error found at long double precision = Poly: 1.208328e-20 Cheb: 1.073723e-20
  754. static const T Y = 1.158985137939453125F;
  755. static const T P[9] = {
  756. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00139324086199409049399),
  757. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0345238388952337563247),
  758. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0382065278072592940767),
  759. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0156117003070560727392),
  760. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00383276012430495387102),
  761. BOOST_MATH_BIG_CONSTANT(T, 64, -0.000697070540945496497992),
  762. BOOST_MATH_BIG_CONSTANT(T, 64, -0.877310384591205930343e-4),
  763. BOOST_MATH_BIG_CONSTANT(T, 64, -0.623067256376494930067e-5),
  764. BOOST_MATH_BIG_CONSTANT(T, 64, -0.377246883283337141444e-6)
  765. };
  766. static const T Q[10] = {
  767. BOOST_MATH_BIG_CONSTANT(T, 64, 1),
  768. BOOST_MATH_BIG_CONSTANT(T, 64, 1.08073635708902053767),
  769. BOOST_MATH_BIG_CONSTANT(T, 64, 0.553681133533942532909),
  770. BOOST_MATH_BIG_CONSTANT(T, 64, 0.176763647137553797451),
  771. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0387891748253869928121),
  772. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0060603004848394727017),
  773. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000670519492939992806051),
  774. BOOST_MATH_BIG_CONSTANT(T, 64, 0.4947357050100855646e-4),
  775. BOOST_MATH_BIG_CONSTANT(T, 64, 0.204339282037446434827e-5),
  776. BOOST_MATH_BIG_CONSTANT(T, 64, 0.146951181174930425744e-7)
  777. };
  778. T t = z / 2 - 4;
  779. result = Y + tools::evaluate_polynomial(P, t)
  780. / tools::evaluate_polynomial(Q, t);
  781. result *= exp(z) / z;
  782. result += z;
  783. }
  784. else if(z <= 20)
  785. {
  786. // Maximum Deviation Found: 3.220e-20
  787. // Expected Error Term: 3.220e-20
  788. // Max Error found at long double precision = Poly: 7.696841e-20 Cheb: 6.205163e-20
  789. static const T Y = 1.0869731903076171875F;
  790. static const T P[10] = {
  791. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00893891094356946995368),
  792. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0487562980088748775943),
  793. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0670568657950041926085),
  794. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509577352851442932713),
  795. BOOST_MATH_BIG_CONSTANT(T, 64, -0.02551800927409034206),
  796. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00892913759760086687083),
  797. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00224469630207344379888),
  798. BOOST_MATH_BIG_CONSTANT(T, 64, -0.000392477245911296982776),
  799. BOOST_MATH_BIG_CONSTANT(T, 64, -0.44424044184395578775e-4),
  800. BOOST_MATH_BIG_CONSTANT(T, 64, -0.252788029251437017959e-5)
  801. };
  802. static const T Q[10] = {
  803. BOOST_MATH_BIG_CONSTANT(T, 64, 1),
  804. BOOST_MATH_BIG_CONSTANT(T, 64, 2.00323265503572414261),
  805. BOOST_MATH_BIG_CONSTANT(T, 64, 1.94688958187256383178),
  806. BOOST_MATH_BIG_CONSTANT(T, 64, 1.19733638134417472296),
  807. BOOST_MATH_BIG_CONSTANT(T, 64, 0.513137726038353385661),
  808. BOOST_MATH_BIG_CONSTANT(T, 64, 0.159135395578007264547),
  809. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0358233587351620919881),
  810. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0056716655597009417875),
  811. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000577048986213535829925),
  812. BOOST_MATH_BIG_CONSTANT(T, 64, 0.290976943033493216793e-4)
  813. };
  814. T t = z / 5 - 3;
  815. result = Y + tools::evaluate_polynomial(P, t)
  816. / tools::evaluate_polynomial(Q, t);
  817. result *= exp(z) / z;
  818. result += z;
  819. }
  820. else if(z <= 40)
  821. {
  822. // Maximum Deviation Found: 2.940e-21
  823. // Expected Error Term: -2.938e-21
  824. // Max Error found at long double precision = Poly: 3.419893e-19 Cheb: 3.359874e-19
  825. static const T Y = 1.03937530517578125F;
  826. static const T P[12] = {
  827. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00356165148914447278177),
  828. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0240235006148610849678),
  829. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0516699967278057976119),
  830. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0586603078706856245674),
  831. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0409960120868776180825),
  832. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0185485073689590665153),
  833. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00537842101034123222417),
  834. BOOST_MATH_BIG_CONSTANT(T, 64, -0.000920988084778273760609),
  835. BOOST_MATH_BIG_CONSTANT(T, 64, -0.716742618812210980263e-4),
  836. BOOST_MATH_BIG_CONSTANT(T, 64, -0.504623302166487346677e-9),
  837. BOOST_MATH_BIG_CONSTANT(T, 64, 0.712662196671896837736e-10),
  838. BOOST_MATH_BIG_CONSTANT(T, 64, -0.533769629702262072175e-11)
  839. };
  840. static const T Q[9] = {
  841. BOOST_MATH_BIG_CONSTANT(T, 64, 1),
  842. BOOST_MATH_BIG_CONSTANT(T, 64, 3.13286733695729715455),
  843. BOOST_MATH_BIG_CONSTANT(T, 64, 4.49281223045653491929),
  844. BOOST_MATH_BIG_CONSTANT(T, 64, 3.84900294427622911374),
  845. BOOST_MATH_BIG_CONSTANT(T, 64, 2.15205199043580378211),
  846. BOOST_MATH_BIG_CONSTANT(T, 64, 0.802912186540269232424),
  847. BOOST_MATH_BIG_CONSTANT(T, 64, 0.194793170017818925388),
  848. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280128013584653182994),
  849. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00182034930799902922549)
  850. };
  851. T t = z / 10 - 3;
  852. result = Y + tools::evaluate_polynomial(P, t)
  853. / tools::evaluate_polynomial(Q, t);
  854. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  855. result *= exp(z) / z;
  856. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  857. result += z;
  858. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  859. }
  860. else
  861. {
  862. // Maximum Deviation Found: 3.536e-20
  863. // Max Error found at long double precision = Poly: 1.310671e-19 Cheb: 8.630943e-11
  864. static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.35385266837019985407899910749034804508871617254555467236651e17));
  865. static const T Y= 1.013065338134765625F;
  866. static const T P[9] = {
  867. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0130653381347656250004),
  868. BOOST_MATH_BIG_CONSTANT(T, 64, 0.644487780349757303739),
  869. BOOST_MATH_BIG_CONSTANT(T, 64, 143.995670348227433964),
  870. BOOST_MATH_BIG_CONSTANT(T, 64, -13918.9322758014173709),
  871. BOOST_MATH_BIG_CONSTANT(T, 64, 476260.975133624194484),
  872. BOOST_MATH_BIG_CONSTANT(T, 64, -7437102.15135982802122),
  873. BOOST_MATH_BIG_CONSTANT(T, 64, 53732298.8764767916542),
  874. BOOST_MATH_BIG_CONSTANT(T, 64, -160695051.957997452509),
  875. BOOST_MATH_BIG_CONSTANT(T, 64, 137839271.592778020028)
  876. };
  877. static const T Q[9] = {
  878. BOOST_MATH_BIG_CONSTANT(T, 64, 1),
  879. BOOST_MATH_BIG_CONSTANT(T, 64, 27.2103343964943718802),
  880. BOOST_MATH_BIG_CONSTANT(T, 64, -8785.48528692879413676),
  881. BOOST_MATH_BIG_CONSTANT(T, 64, 397530.290000322626766),
  882. BOOST_MATH_BIG_CONSTANT(T, 64, -7356441.34957799368252),
  883. BOOST_MATH_BIG_CONSTANT(T, 64, 63050914.5343400957524),
  884. BOOST_MATH_BIG_CONSTANT(T, 64, -246143779.638307701369),
  885. BOOST_MATH_BIG_CONSTANT(T, 64, 384647824.678554961174),
  886. BOOST_MATH_BIG_CONSTANT(T, 64, -166288297.874583961493)
  887. };
  888. T t = 1 / z;
  889. result = Y + tools::evaluate_polynomial(P, t)
  890. / tools::evaluate_polynomial(Q, t);
  891. if(z < 41)
  892. result *= exp(z) / z;
  893. else
  894. {
  895. // Avoid premature overflow if we can:
  896. t = z - 40;
  897. if(t > tools::log_max_value<T>())
  898. {
  899. result = policies::raise_overflow_error<T>(function, 0, pol);
  900. }
  901. else
  902. {
  903. result *= exp(z - 40) / z;
  904. if(result > tools::max_value<T>() / exp40)
  905. {
  906. result = policies::raise_overflow_error<T>(function, 0, pol);
  907. }
  908. else
  909. {
  910. result *= exp40;
  911. }
  912. }
  913. }
  914. result += z;
  915. }
  916. return result;
  917. }
  918. template <class T>
  919. void expint_i_imp_113a(T& result, const T& z)
  920. {
  921. BOOST_MATH_STD_USING
  922. // Maximum Deviation Found: 1.230e-36
  923. // Expected Error Term: -1.230e-36
  924. // Max Error found at long double precision = Poly: 4.355299e-34 Cheb: 7.512581e-34
  925. static const T P[15] = {
  926. BOOST_MATH_BIG_CONSTANT(T, 113, 2.98677224343598593765287235997328555),
  927. BOOST_MATH_BIG_CONSTANT(T, 113, -0.333256034674702967028780537349334037),
  928. BOOST_MATH_BIG_CONSTANT(T, 113, 0.851831522798101228384971644036708463),
  929. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0657854833494646206186773614110374948),
  930. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0630065662557284456000060708977935073),
  931. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00311759191425309373327784154659649232),
  932. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00176213568201493949664478471656026771),
  933. BOOST_MATH_BIG_CONSTANT(T, 113, -0.491548660404172089488535218163952295e-4),
  934. BOOST_MATH_BIG_CONSTANT(T, 113, 0.207764227621061706075562107748176592e-4),
  935. BOOST_MATH_BIG_CONSTANT(T, 113, -0.225445398156913584846374273379402765e-6),
  936. BOOST_MATH_BIG_CONSTANT(T, 113, 0.996939977231410319761273881672601592e-7),
  937. BOOST_MATH_BIG_CONSTANT(T, 113, 0.212546902052178643330520878928100847e-9),
  938. BOOST_MATH_BIG_CONSTANT(T, 113, 0.154646053060262871360159325115980023e-9),
  939. BOOST_MATH_BIG_CONSTANT(T, 113, 0.143971277122049197323415503594302307e-11),
  940. BOOST_MATH_BIG_CONSTANT(T, 113, 0.306243138978114692252817805327426657e-13)
  941. };
  942. static const T Q[15] = {
  943. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  944. BOOST_MATH_BIG_CONSTANT(T, 113, -1.40178870313943798705491944989231793),
  945. BOOST_MATH_BIG_CONSTANT(T, 113, 0.943810968269701047641218856758605284),
  946. BOOST_MATH_BIG_CONSTANT(T, 113, -0.405026631534345064600850391026113165),
  947. BOOST_MATH_BIG_CONSTANT(T, 113, 0.123924153524614086482627660399122762),
  948. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0286364505373369439591132549624317707),
  949. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00516148845910606985396596845494015963),
  950. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000738330799456364820380739850924783649),
  951. BOOST_MATH_BIG_CONSTANT(T, 113, 0.843737760991856114061953265870882637e-4),
  952. BOOST_MATH_BIG_CONSTANT(T, 113, -0.767957673431982543213661388914587589e-5),
  953. BOOST_MATH_BIG_CONSTANT(T, 113, 0.549136847313854595809952100614840031e-6),
  954. BOOST_MATH_BIG_CONSTANT(T, 113, -0.299801381513743676764008325949325404e-7),
  955. BOOST_MATH_BIG_CONSTANT(T, 113, 0.118419479055346106118129130945423483e-8),
  956. BOOST_MATH_BIG_CONSTANT(T, 113, -0.30372295663095470359211949045344607e-10),
  957. BOOST_MATH_BIG_CONSTANT(T, 113, 0.382742953753485333207877784720070523e-12)
  958. };
  959. static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 113, 1677624236387711.0);
  960. static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
  961. static const T c3 = BOOST_MATH_BIG_CONSTANT(T, 113, 266514582277687.0);
  962. static const T c4 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
  963. static const T c5 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
  964. static const T r1 = c1 / c2;
  965. static const T r2 = c3 / c4 / c5;
  966. static const T r3 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 0.283806480836357377069325311780969887585024578164571984232357e-31));
  967. static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
  968. T t = (z / 3) - 1;
  969. result = tools::evaluate_polynomial(P, t)
  970. / tools::evaluate_polynomial(Q, t);
  971. t = ((z - r1) - r2) - r3;
  972. result *= t;
  973. if(fabs(t) < 0.1)
  974. {
  975. result += boost::math::log1p(t / r);
  976. }
  977. else
  978. {
  979. result += log(z / r);
  980. }
  981. }
  982. template <class T>
  983. void expint_i_113b(T& result, const T& z)
  984. {
  985. BOOST_MATH_STD_USING
  986. // Maximum Deviation Found: 7.779e-36
  987. // Expected Error Term: -7.779e-36
  988. // Max Error found at long double precision = Poly: 2.576723e-35 Cheb: 1.236001e-34
  989. static const T Y = 1.158985137939453125F;
  990. static const T P[15] = {
  991. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139324086199409049282472239613554817),
  992. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338173111691991289178779840307998955),
  993. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0555972290794371306259684845277620556),
  994. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0378677976003456171563136909186202177),
  995. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0152221583517528358782902783914356667),
  996. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00428283334203873035104248217403126905),
  997. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000922782631491644846511553601323435286),
  998. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000155513428088853161562660696055496696),
  999. BOOST_MATH_BIG_CONSTANT(T, 113, -0.205756580255359882813545261519317096e-4),
  1000. BOOST_MATH_BIG_CONSTANT(T, 113, -0.220327406578552089820753181821115181e-5),
  1001. BOOST_MATH_BIG_CONSTANT(T, 113, -0.189483157545587592043421445645377439e-6),
  1002. BOOST_MATH_BIG_CONSTANT(T, 113, -0.122426571518570587750898968123803867e-7),
  1003. BOOST_MATH_BIG_CONSTANT(T, 113, -0.635187358949437991465353268374523944e-9),
  1004. BOOST_MATH_BIG_CONSTANT(T, 113, -0.203015132965870311935118337194860863e-10),
  1005. BOOST_MATH_BIG_CONSTANT(T, 113, -0.384276705503357655108096065452950822e-12)
  1006. };
  1007. static const T Q[15] = {
  1008. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  1009. BOOST_MATH_BIG_CONSTANT(T, 113, 1.58784732785354597996617046880946257),
  1010. BOOST_MATH_BIG_CONSTANT(T, 113, 1.18550755302279446339364262338114098),
  1011. BOOST_MATH_BIG_CONSTANT(T, 113, 0.55598993549661368604527040349702836),
  1012. BOOST_MATH_BIG_CONSTANT(T, 113, 0.184290888380564236919107835030984453),
  1013. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0459658051803613282360464632326866113),
  1014. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0089505064268613225167835599456014705),
  1015. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139042673882987693424772855926289077),
  1016. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000174210708041584097450805790176479012),
  1017. BOOST_MATH_BIG_CONSTANT(T, 113, 0.176324034009707558089086875136647376e-4),
  1018. BOOST_MATH_BIG_CONSTANT(T, 113, 0.142935845999505649273084545313710581e-5),
  1019. BOOST_MATH_BIG_CONSTANT(T, 113, 0.907502324487057260675816233312747784e-7),
  1020. BOOST_MATH_BIG_CONSTANT(T, 113, 0.431044337808893270797934621235918418e-8),
  1021. BOOST_MATH_BIG_CONSTANT(T, 113, 0.139007266881450521776529705677086902e-9),
  1022. BOOST_MATH_BIG_CONSTANT(T, 113, 0.234715286125516430792452741830364672e-11)
  1023. };
  1024. T t = z / 2 - 4;
  1025. result = Y + tools::evaluate_polynomial(P, t)
  1026. / tools::evaluate_polynomial(Q, t);
  1027. result *= exp(z) / z;
  1028. result += z;
  1029. }
  1030. template <class T>
  1031. void expint_i_113c(T& result, const T& z)
  1032. {
  1033. BOOST_MATH_STD_USING
  1034. // Maximum Deviation Found: 1.082e-34
  1035. // Expected Error Term: 1.080e-34
  1036. // Max Error found at long double precision = Poly: 1.958294e-34 Cheb: 2.472261e-34
  1037. static const T Y = 1.091579437255859375F;
  1038. static const T P[17] = {
  1039. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00685089599550151282724924894258520532),
  1040. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0443313550253580053324487059748497467),
  1041. BOOST_MATH_BIG_CONSTANT(T, 113, -0.071538561252424027443296958795814874),
  1042. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0622923153354102682285444067843300583),
  1043. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0361631270264607478205393775461208794),
  1044. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0153192826839624850298106509601033261),
  1045. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00496967904961260031539602977748408242),
  1046. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126989079663425780800919171538920589),
  1047. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000258933143097125199914724875206326698),
  1048. BOOST_MATH_BIG_CONSTANT(T, 113, -0.422110326689204794443002330541441956e-4),
  1049. BOOST_MATH_BIG_CONSTANT(T, 113, -0.546004547590412661451073996127115221e-5),
  1050. BOOST_MATH_BIG_CONSTANT(T, 113, -0.546775260262202177131068692199272241e-6),
  1051. BOOST_MATH_BIG_CONSTANT(T, 113, -0.404157632825805803833379568956559215e-7),
  1052. BOOST_MATH_BIG_CONSTANT(T, 113, -0.200612596196561323832327013027419284e-8),
  1053. BOOST_MATH_BIG_CONSTANT(T, 113, -0.502538501472133913417609379765434153e-10),
  1054. BOOST_MATH_BIG_CONSTANT(T, 113, -0.326283053716799774936661568391296584e-13),
  1055. BOOST_MATH_BIG_CONSTANT(T, 113, 0.869226483473172853557775877908693647e-15)
  1056. };
  1057. static const T Q[15] = {
  1058. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  1059. BOOST_MATH_BIG_CONSTANT(T, 113, 2.23227220874479061894038229141871087),
  1060. BOOST_MATH_BIG_CONSTANT(T, 113, 2.40221000361027971895657505660959863),
  1061. BOOST_MATH_BIG_CONSTANT(T, 113, 1.65476320985936174728238416007084214),
  1062. BOOST_MATH_BIG_CONSTANT(T, 113, 0.816828602963895720369875535001248227),
  1063. BOOST_MATH_BIG_CONSTANT(T, 113, 0.306337922909446903672123418670921066),
  1064. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0902400121654409267774593230720600752),
  1065. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0212708882169429206498765100993228086),
  1066. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00404442626252467471957713495828165491),
  1067. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0006195601618842253612635241404054589),
  1068. BOOST_MATH_BIG_CONSTANT(T, 113, 0.755930932686543009521454653994321843e-4),
  1069. BOOST_MATH_BIG_CONSTANT(T, 113, 0.716004532773778954193609582677482803e-5),
  1070. BOOST_MATH_BIG_CONSTANT(T, 113, 0.500881663076471627699290821742924233e-6),
  1071. BOOST_MATH_BIG_CONSTANT(T, 113, 0.233593219218823384508105943657387644e-7),
  1072. BOOST_MATH_BIG_CONSTANT(T, 113, 0.554900353169148897444104962034267682e-9)
  1073. };
  1074. T t = z / 4 - 3.5;
  1075. result = Y + tools::evaluate_polynomial(P, t)
  1076. / tools::evaluate_polynomial(Q, t);
  1077. result *= exp(z) / z;
  1078. result += z;
  1079. }
  1080. template <class T>
  1081. void expint_i_113d(T& result, const T& z)
  1082. {
  1083. BOOST_MATH_STD_USING
  1084. // Maximum Deviation Found: 3.163e-35
  1085. // Expected Error Term: 3.163e-35
  1086. // Max Error found at long double precision = Poly: 4.158110e-35 Cheb: 5.385532e-35
  1087. static const T Y = 1.051731109619140625F;
  1088. static const T P[14] = {
  1089. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00144552494420652573815404828020593565),
  1090. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126747451594545338365684731262912741),
  1091. BOOST_MATH_BIG_CONSTANT(T, 113, -0.01757394877502366717526779263438073),
  1092. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126838952395506921945756139424722588),
  1093. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0060045057928894974954756789352443522),
  1094. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00205349237147226126653803455793107903),
  1095. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000532606040579654887676082220195624207),
  1096. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000107344687098019891474772069139014662),
  1097. BOOST_MATH_BIG_CONSTANT(T, 113, -0.169536802705805811859089949943435152e-4),
  1098. BOOST_MATH_BIG_CONSTANT(T, 113, -0.20863311729206543881826553010120078e-5),
  1099. BOOST_MATH_BIG_CONSTANT(T, 113, -0.195670358542116256713560296776654385e-6),
  1100. BOOST_MATH_BIG_CONSTANT(T, 113, -0.133291168587253145439184028259772437e-7),
  1101. BOOST_MATH_BIG_CONSTANT(T, 113, -0.595500337089495614285777067722823397e-9),
  1102. BOOST_MATH_BIG_CONSTANT(T, 113, -0.133141358866324100955927979606981328e-10)
  1103. };
  1104. static const T Q[14] = {
  1105. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  1106. BOOST_MATH_BIG_CONSTANT(T, 113, 1.72490783907582654629537013560044682),
  1107. BOOST_MATH_BIG_CONSTANT(T, 113, 1.44524329516800613088375685659759765),
  1108. BOOST_MATH_BIG_CONSTANT(T, 113, 0.778241785539308257585068744978050181),
  1109. BOOST_MATH_BIG_CONSTANT(T, 113, 0.300520486589206605184097270225725584),
  1110. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0879346899691339661394537806057953957),
  1111. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0200802415843802892793583043470125006),
  1112. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00362842049172586254520256100538273214),
  1113. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000519731362862955132062751246769469957),
  1114. BOOST_MATH_BIG_CONSTANT(T, 113, 0.584092147914050999895178697392282665e-4),
  1115. BOOST_MATH_BIG_CONSTANT(T, 113, 0.501851497707855358002773398333542337e-5),
  1116. BOOST_MATH_BIG_CONSTANT(T, 113, 0.313085677467921096644895738538865537e-6),
  1117. BOOST_MATH_BIG_CONSTANT(T, 113, 0.127552010539733113371132321521204458e-7),
  1118. BOOST_MATH_BIG_CONSTANT(T, 113, 0.25737310826983451144405899970774587e-9)
  1119. };
  1120. T t = z / 4 - 5.5;
  1121. result = Y + tools::evaluate_polynomial(P, t)
  1122. / tools::evaluate_polynomial(Q, t);
  1123. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1124. result *= exp(z) / z;
  1125. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1126. result += z;
  1127. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1128. }
  1129. template <class T>
  1130. void expint_i_113e(T& result, const T& z)
  1131. {
  1132. BOOST_MATH_STD_USING
  1133. // Maximum Deviation Found: 7.972e-36
  1134. // Expected Error Term: 7.962e-36
  1135. // Max Error found at long double precision = Poly: 1.711721e-34 Cheb: 3.100018e-34
  1136. static const T Y = 1.032726287841796875F;
  1137. static const T P[15] = {
  1138. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00141056919297307534690895009969373233),
  1139. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0123384175302540291339020257071411437),
  1140. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0298127270706864057791526083667396115),
  1141. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0390686759471630584626293670260768098),
  1142. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338226792912607409822059922949035589),
  1143. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0211659736179834946452561197559654582),
  1144. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100428887460879377373158821400070313),
  1145. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00370717396015165148484022792801682932),
  1146. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0010768667551001624764329000496561659),
  1147. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000246127328761027039347584096573123531),
  1148. BOOST_MATH_BIG_CONSTANT(T, 113, -0.437318110527818613580613051861991198e-4),
  1149. BOOST_MATH_BIG_CONSTANT(T, 113, -0.587532682329299591501065482317771497e-5),
  1150. BOOST_MATH_BIG_CONSTANT(T, 113, -0.565697065670893984610852937110819467e-6),
  1151. BOOST_MATH_BIG_CONSTANT(T, 113, -0.350233957364028523971768887437839573e-7),
  1152. BOOST_MATH_BIG_CONSTANT(T, 113, -0.105428907085424234504608142258423505e-8)
  1153. };
  1154. static const T Q[16] = {
  1155. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  1156. BOOST_MATH_BIG_CONSTANT(T, 113, 3.17261315255467581204685605414005525),
  1157. BOOST_MATH_BIG_CONSTANT(T, 113, 4.85267952971640525245338392887217426),
  1158. BOOST_MATH_BIG_CONSTANT(T, 113, 4.74341914912439861451492872946725151),
  1159. BOOST_MATH_BIG_CONSTANT(T, 113, 3.31108463283559911602405970817931801),
  1160. BOOST_MATH_BIG_CONSTANT(T, 113, 1.74657006336994649386607925179848899),
  1161. BOOST_MATH_BIG_CONSTANT(T, 113, 0.718255607416072737965933040353653244),
  1162. BOOST_MATH_BIG_CONSTANT(T, 113, 0.234037553177354542791975767960643864),
  1163. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0607470145906491602476833515412605389),
  1164. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0125048143774226921434854172947548724),
  1165. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00201034366420433762935768458656609163),
  1166. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000244823338417452367656368849303165721),
  1167. BOOST_MATH_BIG_CONSTANT(T, 113, 0.213511655166983177960471085462540807e-4),
  1168. BOOST_MATH_BIG_CONSTANT(T, 113, 0.119323998465870686327170541547982932e-5),
  1169. BOOST_MATH_BIG_CONSTANT(T, 113, 0.322153582559488797803027773591727565e-7),
  1170. BOOST_MATH_BIG_CONSTANT(T, 113, -0.161635525318683508633792845159942312e-16)
  1171. };
  1172. T t = z / 8 - 4.25;
  1173. result = Y + tools::evaluate_polynomial(P, t)
  1174. / tools::evaluate_polynomial(Q, t);
  1175. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1176. result *= exp(z) / z;
  1177. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1178. result += z;
  1179. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1180. }
  1181. template <class T>
  1182. void expint_i_113f(T& result, const T& z)
  1183. {
  1184. BOOST_MATH_STD_USING
  1185. // Maximum Deviation Found: 4.469e-36
  1186. // Expected Error Term: 4.468e-36
  1187. // Max Error found at long double precision = Poly: 1.288958e-35 Cheb: 2.304586e-35
  1188. static const T Y = 1.0216197967529296875F;
  1189. static const T P[12] = {
  1190. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000322999116096627043476023926572650045),
  1191. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00385606067447365187909164609294113346),
  1192. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00686514524727568176735949971985244415),
  1193. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00606260649593050194602676772589601799),
  1194. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00334382362017147544335054575436194357),
  1195. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126108534260253075708625583630318043),
  1196. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000337881489347846058951220431209276776),
  1197. BOOST_MATH_BIG_CONSTANT(T, 113, -0.648480902304640018785370650254018022e-4),
  1198. BOOST_MATH_BIG_CONSTANT(T, 113, -0.87652644082970492211455290209092766e-5),
  1199. BOOST_MATH_BIG_CONSTANT(T, 113, -0.794712243338068631557849449519994144e-6),
  1200. BOOST_MATH_BIG_CONSTANT(T, 113, -0.434084023639508143975983454830954835e-7),
  1201. BOOST_MATH_BIG_CONSTANT(T, 113, -0.107839681938752337160494412638656696e-8)
  1202. };
  1203. static const T Q[12] = {
  1204. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  1205. BOOST_MATH_BIG_CONSTANT(T, 113, 2.09913805456661084097134805151524958),
  1206. BOOST_MATH_BIG_CONSTANT(T, 113, 2.07041755535439919593503171320431849),
  1207. BOOST_MATH_BIG_CONSTANT(T, 113, 1.26406517226052371320416108604874734),
  1208. BOOST_MATH_BIG_CONSTANT(T, 113, 0.529689923703770353961553223973435569),
  1209. BOOST_MATH_BIG_CONSTANT(T, 113, 0.159578150879536711042269658656115746),
  1210. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0351720877642000691155202082629857131),
  1211. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00565313621289648752407123620997063122),
  1212. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000646920278540515480093843570291218295),
  1213. BOOST_MATH_BIG_CONSTANT(T, 113, 0.499904084850091676776993523323213591e-4),
  1214. BOOST_MATH_BIG_CONSTANT(T, 113, 0.233740058688179614344680531486267142e-5),
  1215. BOOST_MATH_BIG_CONSTANT(T, 113, 0.498800627828842754845418576305379469e-7)
  1216. };
  1217. T t = z / 7 - 7;
  1218. result = Y + tools::evaluate_polynomial(P, t)
  1219. / tools::evaluate_polynomial(Q, t);
  1220. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1221. result *= exp(z) / z;
  1222. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1223. result += z;
  1224. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1225. }
  1226. template <class T>
  1227. void expint_i_113g(T& result, const T& z)
  1228. {
  1229. BOOST_MATH_STD_USING
  1230. // Maximum Deviation Found: 5.588e-35
  1231. // Expected Error Term: -5.566e-35
  1232. // Max Error found at long double precision = Poly: 9.976345e-35 Cheb: 8.358865e-35
  1233. static const T Y = 1.015148162841796875F;
  1234. static const T P[11] = {
  1235. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000435714784725086961464589957142615216),
  1236. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00432114324353830636009453048419094314),
  1237. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100740363285526177522819204820582424),
  1238. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0116744115827059174392383504427640362),
  1239. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00816145387784261141360062395898644652),
  1240. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00371380272673500791322744465394211508),
  1241. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00112958263488611536502153195005736563),
  1242. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000228316462389404645183269923754256664),
  1243. BOOST_MATH_BIG_CONSTANT(T, 113, -0.29462181955852860250359064291292577e-4),
  1244. BOOST_MATH_BIG_CONSTANT(T, 113, -0.21972450610957417963227028788460299e-5),
  1245. BOOST_MATH_BIG_CONSTANT(T, 113, -0.720558173805289167524715527536874694e-7)
  1246. };
  1247. static const T Q[11] = {
  1248. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  1249. BOOST_MATH_BIG_CONSTANT(T, 113, 2.95918362458402597039366979529287095),
  1250. BOOST_MATH_BIG_CONSTANT(T, 113, 3.96472247520659077944638411856748924),
  1251. BOOST_MATH_BIG_CONSTANT(T, 113, 3.15563251550528513747923714884142131),
  1252. BOOST_MATH_BIG_CONSTANT(T, 113, 1.64674612007093983894215359287448334),
  1253. BOOST_MATH_BIG_CONSTANT(T, 113, 0.58695020129846594405856226787156424),
  1254. BOOST_MATH_BIG_CONSTANT(T, 113, 0.144358385319329396231755457772362793),
  1255. BOOST_MATH_BIG_CONSTANT(T, 113, 0.024146911506411684815134916238348063),
  1256. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026257132337460784266874572001650153),
  1257. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000167479843750859222348869769094711093),
  1258. BOOST_MATH_BIG_CONSTANT(T, 113, 0.475673638665358075556452220192497036e-5)
  1259. };
  1260. T t = z / 14 - 5;
  1261. result = Y + tools::evaluate_polynomial(P, t)
  1262. / tools::evaluate_polynomial(Q, t);
  1263. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1264. result *= exp(z) / z;
  1265. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1266. result += z;
  1267. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1268. }
  1269. template <class T>
  1270. void expint_i_113h(T& result, const T& z)
  1271. {
  1272. BOOST_MATH_STD_USING
  1273. // Maximum Deviation Found: 4.448e-36
  1274. // Expected Error Term: 4.445e-36
  1275. // Max Error found at long double precision = Poly: 2.058532e-35 Cheb: 2.165465e-27
  1276. static const T Y= 1.00849151611328125F;
  1277. static const T P[9] = {
  1278. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0084915161132812500000001440233607358),
  1279. BOOST_MATH_BIG_CONSTANT(T, 113, 1.84479378737716028341394223076147872),
  1280. BOOST_MATH_BIG_CONSTANT(T, 113, -130.431146923726715674081563022115568),
  1281. BOOST_MATH_BIG_CONSTANT(T, 113, 4336.26945491571504885214176203512015),
  1282. BOOST_MATH_BIG_CONSTANT(T, 113, -76279.0031974974730095170437591004177),
  1283. BOOST_MATH_BIG_CONSTANT(T, 113, 729577.956271997673695191455111727774),
  1284. BOOST_MATH_BIG_CONSTANT(T, 113, -3661928.69330208734947103004900349266),
  1285. BOOST_MATH_BIG_CONSTANT(T, 113, 8570600.041606912735872059184527855),
  1286. BOOST_MATH_BIG_CONSTANT(T, 113, -6758379.93672362080947905580906028645)
  1287. };
  1288. static const T Q[10] = {
  1289. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  1290. BOOST_MATH_BIG_CONSTANT(T, 113, -99.4868026047611434569541483506091713),
  1291. BOOST_MATH_BIG_CONSTANT(T, 113, 3879.67753690517114249705089803055473),
  1292. BOOST_MATH_BIG_CONSTANT(T, 113, -76495.82413252517165830203774900806),
  1293. BOOST_MATH_BIG_CONSTANT(T, 113, 820773.726408311894342553758526282667),
  1294. BOOST_MATH_BIG_CONSTANT(T, 113, -4803087.64956923577571031564909646579),
  1295. BOOST_MATH_BIG_CONSTANT(T, 113, 14521246.227703545012713173740895477),
  1296. BOOST_MATH_BIG_CONSTANT(T, 113, -19762752.0196769712258527849159393044),
  1297. BOOST_MATH_BIG_CONSTANT(T, 113, 8354144.67882768405803322344185185517),
  1298. BOOST_MATH_BIG_CONSTANT(T, 113, 355076.853106511136734454134915432571)
  1299. };
  1300. T t = 1 / z;
  1301. result = Y + tools::evaluate_polynomial(P, t)
  1302. / tools::evaluate_polynomial(Q, t);
  1303. result *= exp(z) / z;
  1304. result += z;
  1305. }
  1306. template <class T, class Policy>
  1307. T expint_i_imp(T z, const Policy& pol, const mpl::int_<113>& tag)
  1308. {
  1309. BOOST_MATH_STD_USING
  1310. static const char* function = "boost::math::expint<%1%>(%1%)";
  1311. if(z < 0)
  1312. return -expint_imp(1, T(-z), pol, tag);
  1313. if(z == 0)
  1314. return -policies::raise_overflow_error<T>(function, 0, pol);
  1315. T result;
  1316. if(z <= 6)
  1317. {
  1318. expint_i_imp_113a(result, z);
  1319. }
  1320. else if (z <= 10)
  1321. {
  1322. expint_i_113b(result, z);
  1323. }
  1324. else if(z <= 18)
  1325. {
  1326. expint_i_113c(result, z);
  1327. }
  1328. else if(z <= 26)
  1329. {
  1330. expint_i_113d(result, z);
  1331. }
  1332. else if(z <= 42)
  1333. {
  1334. expint_i_113e(result, z);
  1335. }
  1336. else if(z <= 56)
  1337. {
  1338. expint_i_113f(result, z);
  1339. }
  1340. else if(z <= 84)
  1341. {
  1342. expint_i_113g(result, z);
  1343. }
  1344. else if(z <= 210)
  1345. {
  1346. expint_i_113h(result, z);
  1347. }
  1348. else // z > 210
  1349. {
  1350. // Maximum Deviation Found: 3.963e-37
  1351. // Expected Error Term: 3.963e-37
  1352. // Max Error found at long double precision = Poly: 1.248049e-36 Cheb: 2.843486e-29
  1353. static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 2.35385266837019985407899910749034804508871617254555467236651e17));
  1354. static const T Y= 1.00252532958984375F;
  1355. static const T P[8] = {
  1356. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00252532958984375000000000000000000085),
  1357. BOOST_MATH_BIG_CONSTANT(T, 113, 1.16591386866059087390621952073890359),
  1358. BOOST_MATH_BIG_CONSTANT(T, 113, -67.8483431314018462417456828499277579),
  1359. BOOST_MATH_BIG_CONSTANT(T, 113, 1567.68688154683822956359536287575892),
  1360. BOOST_MATH_BIG_CONSTANT(T, 113, -17335.4683325819116482498725687644986),
  1361. BOOST_MATH_BIG_CONSTANT(T, 113, 93632.6567462673524739954389166550069),
  1362. BOOST_MATH_BIG_CONSTANT(T, 113, -225025.189335919133214440347510936787),
  1363. BOOST_MATH_BIG_CONSTANT(T, 113, 175864.614717440010942804684741336853)
  1364. };
  1365. static const T Q[9] = {
  1366. BOOST_MATH_BIG_CONSTANT(T, 113, 1),
  1367. BOOST_MATH_BIG_CONSTANT(T, 113, -65.6998869881600212224652719706425129),
  1368. BOOST_MATH_BIG_CONSTANT(T, 113, 1642.73850032324014781607859416890077),
  1369. BOOST_MATH_BIG_CONSTANT(T, 113, -19937.2610222467322481947237312818575),
  1370. BOOST_MATH_BIG_CONSTANT(T, 113, 124136.267326632742667972126625064538),
  1371. BOOST_MATH_BIG_CONSTANT(T, 113, -384614.251466704550678760562965502293),
  1372. BOOST_MATH_BIG_CONSTANT(T, 113, 523355.035910385688578278384032026998),
  1373. BOOST_MATH_BIG_CONSTANT(T, 113, -217809.552260834025885677791936351294),
  1374. BOOST_MATH_BIG_CONSTANT(T, 113, -8555.81719551123640677261226549550872)
  1375. };
  1376. T t = 1 / z;
  1377. result = Y + tools::evaluate_polynomial(P, t)
  1378. / tools::evaluate_polynomial(Q, t);
  1379. if(z < 41)
  1380. result *= exp(z) / z;
  1381. else
  1382. {
  1383. // Avoid premature overflow if we can:
  1384. t = z - 40;
  1385. if(t > tools::log_max_value<T>())
  1386. {
  1387. result = policies::raise_overflow_error<T>(function, 0, pol);
  1388. }
  1389. else
  1390. {
  1391. result *= exp(z - 40) / z;
  1392. if(result > tools::max_value<T>() / exp40)
  1393. {
  1394. result = policies::raise_overflow_error<T>(function, 0, pol);
  1395. }
  1396. else
  1397. {
  1398. result *= exp40;
  1399. }
  1400. }
  1401. }
  1402. result += z;
  1403. }
  1404. return result;
  1405. }
  1406. template <class T, class Policy, class tag>
  1407. struct expint_i_initializer
  1408. {
  1409. struct init
  1410. {
  1411. init()
  1412. {
  1413. do_init(tag());
  1414. }
  1415. static void do_init(const mpl::int_<0>&){}
  1416. static void do_init(const mpl::int_<53>&)
  1417. {
  1418. boost::math::expint(T(5));
  1419. boost::math::expint(T(7));
  1420. boost::math::expint(T(18));
  1421. boost::math::expint(T(38));
  1422. boost::math::expint(T(45));
  1423. }
  1424. static void do_init(const mpl::int_<64>&)
  1425. {
  1426. boost::math::expint(T(5));
  1427. boost::math::expint(T(7));
  1428. boost::math::expint(T(18));
  1429. boost::math::expint(T(38));
  1430. boost::math::expint(T(45));
  1431. }
  1432. static void do_init(const mpl::int_<113>&)
  1433. {
  1434. boost::math::expint(T(5));
  1435. boost::math::expint(T(7));
  1436. boost::math::expint(T(17));
  1437. boost::math::expint(T(25));
  1438. boost::math::expint(T(40));
  1439. boost::math::expint(T(50));
  1440. boost::math::expint(T(80));
  1441. boost::math::expint(T(200));
  1442. boost::math::expint(T(220));
  1443. }
  1444. void force_instantiate()const{}
  1445. };
  1446. static const init initializer;
  1447. static void force_instantiate()
  1448. {
  1449. initializer.force_instantiate();
  1450. }
  1451. };
  1452. template <class T, class Policy, class tag>
  1453. const typename expint_i_initializer<T, Policy, tag>::init expint_i_initializer<T, Policy, tag>::initializer;
  1454. template <class T, class Policy, class tag>
  1455. struct expint_1_initializer
  1456. {
  1457. struct init
  1458. {
  1459. init()
  1460. {
  1461. do_init(tag());
  1462. }
  1463. static void do_init(const mpl::int_<0>&){}
  1464. static void do_init(const mpl::int_<53>&)
  1465. {
  1466. boost::math::expint(1, T(0.5));
  1467. boost::math::expint(1, T(2));
  1468. }
  1469. static void do_init(const mpl::int_<64>&)
  1470. {
  1471. boost::math::expint(1, T(0.5));
  1472. boost::math::expint(1, T(2));
  1473. }
  1474. static void do_init(const mpl::int_<113>&)
  1475. {
  1476. boost::math::expint(1, T(0.5));
  1477. boost::math::expint(1, T(2));
  1478. boost::math::expint(1, T(6));
  1479. }
  1480. void force_instantiate()const{}
  1481. };
  1482. static const init initializer;
  1483. static void force_instantiate()
  1484. {
  1485. initializer.force_instantiate();
  1486. }
  1487. };
  1488. template <class T, class Policy, class tag>
  1489. const typename expint_1_initializer<T, Policy, tag>::init expint_1_initializer<T, Policy, tag>::initializer;
  1490. template <class T, class Policy>
  1491. inline typename tools::promote_args<T>::type
  1492. expint_forwarder(T z, const Policy& /*pol*/, mpl::true_ const&)
  1493. {
  1494. typedef typename tools::promote_args<T>::type result_type;
  1495. typedef typename policies::evaluation<result_type, Policy>::type value_type;
  1496. typedef typename policies::precision<result_type, Policy>::type precision_type;
  1497. typedef typename policies::normalise<
  1498. Policy,
  1499. policies::promote_float<false>,
  1500. policies::promote_double<false>,
  1501. policies::discrete_quantile<>,
  1502. policies::assert_undefined<> >::type forwarding_policy;
  1503. typedef typename mpl::if_<
  1504. mpl::less_equal<precision_type, mpl::int_<0> >,
  1505. mpl::int_<0>,
  1506. typename mpl::if_<
  1507. mpl::less_equal<precision_type, mpl::int_<53> >,
  1508. mpl::int_<53>, // double
  1509. typename mpl::if_<
  1510. mpl::less_equal<precision_type, mpl::int_<64> >,
  1511. mpl::int_<64>, // 80-bit long double
  1512. typename mpl::if_<
  1513. mpl::less_equal<precision_type, mpl::int_<113> >,
  1514. mpl::int_<113>, // 128-bit long double
  1515. mpl::int_<0> // too many bits, use generic version.
  1516. >::type
  1517. >::type
  1518. >::type
  1519. >::type tag_type;
  1520. expint_i_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
  1521. return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expint_i_imp(
  1522. static_cast<value_type>(z),
  1523. forwarding_policy(),
  1524. tag_type()), "boost::math::expint<%1%>(%1%)");
  1525. }
  1526. template <class T>
  1527. inline typename tools::promote_args<T>::type
  1528. expint_forwarder(unsigned n, T z, const mpl::false_&)
  1529. {
  1530. return boost::math::expint(n, z, policies::policy<>());
  1531. }
  1532. } // namespace detail
  1533. template <class T, class Policy>
  1534. inline typename tools::promote_args<T>::type
  1535. expint(unsigned n, T z, const Policy& /*pol*/)
  1536. {
  1537. typedef typename tools::promote_args<T>::type result_type;
  1538. typedef typename policies::evaluation<result_type, Policy>::type value_type;
  1539. typedef typename policies::precision<result_type, Policy>::type precision_type;
  1540. typedef typename policies::normalise<
  1541. Policy,
  1542. policies::promote_float<false>,
  1543. policies::promote_double<false>,
  1544. policies::discrete_quantile<>,
  1545. policies::assert_undefined<> >::type forwarding_policy;
  1546. typedef typename mpl::if_<
  1547. mpl::less_equal<precision_type, mpl::int_<0> >,
  1548. mpl::int_<0>,
  1549. typename mpl::if_<
  1550. mpl::less_equal<precision_type, mpl::int_<53> >,
  1551. mpl::int_<53>, // double
  1552. typename mpl::if_<
  1553. mpl::less_equal<precision_type, mpl::int_<64> >,
  1554. mpl::int_<64>, // 80-bit long double
  1555. typename mpl::if_<
  1556. mpl::less_equal<precision_type, mpl::int_<113> >,
  1557. mpl::int_<113>, // 128-bit long double
  1558. mpl::int_<0> // too many bits, use generic version.
  1559. >::type
  1560. >::type
  1561. >::type
  1562. >::type tag_type;
  1563. detail::expint_1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
  1564. return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expint_imp(
  1565. n,
  1566. static_cast<value_type>(z),
  1567. forwarding_policy(),
  1568. tag_type()), "boost::math::expint<%1%>(unsigned, %1%)");
  1569. }
  1570. template <class T, class U>
  1571. inline typename detail::expint_result<T, U>::type
  1572. expint(T const z, U const u)
  1573. {
  1574. typedef typename policies::is_policy<U>::type tag_type;
  1575. return detail::expint_forwarder(z, u, tag_type());
  1576. }
  1577. template <class T>
  1578. inline typename tools::promote_args<T>::type
  1579. expint(T z)
  1580. {
  1581. return expint(z, policies::policy<>());
  1582. }
  1583. }} // namespaces
  1584. #endif // BOOST_MATH_EXPINT_HPP