123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323 |
- // (C) Copyright John Maddock 2006.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP
- #define BOOST_MATH_TOOLS_POLYNOMIAL_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/assert.hpp>
- #include <boost/math/tools/rational.hpp>
- #include <boost/math/tools/real_cast.hpp>
- #include <boost/math/special_functions/binomial.hpp>
- #include <vector>
- #include <ostream>
- #include <algorithm>
- namespace boost{ namespace math{ namespace tools{
- template <class T>
- T chebyshev_coefficient(unsigned n, unsigned m)
- {
- BOOST_MATH_STD_USING
- if(m > n)
- return 0;
- if((n & 1) != (m & 1))
- return 0;
- if(n == 0)
- return 1;
- T result = T(n) / 2;
- unsigned r = n - m;
- r /= 2;
- BOOST_ASSERT(n - 2 * r == m);
- if(r & 1)
- result = -result;
- result /= n - r;
- result *= boost::math::binomial_coefficient<T>(n - r, r);
- result *= ldexp(1.0f, m);
- return result;
- }
- template <class Seq>
- Seq polynomial_to_chebyshev(const Seq& s)
- {
- // Converts a Polynomial into Chebyshev form:
- typedef typename Seq::value_type value_type;
- typedef typename Seq::difference_type difference_type;
- Seq result(s);
- difference_type order = s.size() - 1;
- difference_type even_order = order & 1 ? order - 1 : order;
- difference_type odd_order = order & 1 ? order : order - 1;
- for(difference_type i = even_order; i >= 0; i -= 2)
- {
- value_type val = s[i];
- for(difference_type k = even_order; k > i; k -= 2)
- {
- val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
- }
- val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
- result[i] = val;
- }
- result[0] *= 2;
- for(difference_type i = odd_order; i >= 0; i -= 2)
- {
- value_type val = s[i];
- for(difference_type k = odd_order; k > i; k -= 2)
- {
- val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
- }
- val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
- result[i] = val;
- }
- return result;
- }
- template <class Seq, class T>
- T evaluate_chebyshev(const Seq& a, const T& x)
- {
- // Clenshaw's formula:
- typedef typename Seq::difference_type difference_type;
- T yk2 = 0;
- T yk1 = 0;
- T yk = 0;
- for(difference_type i = a.size() - 1; i >= 1; --i)
- {
- yk2 = yk1;
- yk1 = yk;
- yk = 2 * x * yk1 - yk2 + a[i];
- }
- return a[0] / 2 + yk * x - yk1;
- }
- template <class T>
- class polynomial
- {
- public:
- // typedefs:
- typedef typename std::vector<T>::value_type value_type;
- typedef typename std::vector<T>::size_type size_type;
- // construct:
- polynomial(){}
- template <class U>
- polynomial(const U* data, unsigned order)
- : m_data(data, data + order + 1)
- {
- }
- template <class U>
- polynomial(const U& point)
- {
- m_data.push_back(point);
- }
- // copy:
- polynomial(const polynomial& p)
- : m_data(p.m_data) { }
- template <class U>
- polynomial(const polynomial<U>& p)
- {
- for(unsigned i = 0; i < p.size(); ++i)
- {
- m_data.push_back(boost::math::tools::real_cast<T>(p[i]));
- }
- }
- // access:
- size_type size()const { return m_data.size(); }
- size_type degree()const { return m_data.size() - 1; }
- value_type& operator[](size_type i)
- {
- return m_data[i];
- }
- const value_type& operator[](size_type i)const
- {
- return m_data[i];
- }
- T evaluate(T z)const
- {
- return boost::math::tools::evaluate_polynomial(&m_data[0], z, m_data.size());;
- }
- std::vector<T> chebyshev()const
- {
- return polynomial_to_chebyshev(m_data);
- }
- // operators:
- template <class U>
- polynomial& operator +=(const U& value)
- {
- if(m_data.size() == 0)
- m_data.push_back(value);
- else
- {
- m_data[0] += value;
- }
- return *this;
- }
- template <class U>
- polynomial& operator -=(const U& value)
- {
- if(m_data.size() == 0)
- m_data.push_back(-value);
- else
- {
- m_data[0] -= value;
- }
- return *this;
- }
- template <class U>
- polynomial& operator *=(const U& value)
- {
- for(size_type i = 0; i < m_data.size(); ++i)
- m_data[i] *= value;
- return *this;
- }
- template <class U>
- polynomial& operator +=(const polynomial<U>& value)
- {
- size_type s1 = (std::min)(m_data.size(), value.size());
- for(size_type i = 0; i < s1; ++i)
- m_data[i] += value[i];
- for(size_type i = s1; i < value.size(); ++i)
- m_data.push_back(value[i]);
- return *this;
- }
- template <class U>
- polynomial& operator -=(const polynomial<U>& value)
- {
- size_type s1 = (std::min)(m_data.size(), value.size());
- for(size_type i = 0; i < s1; ++i)
- m_data[i] -= value[i];
- for(size_type i = s1; i < value.size(); ++i)
- m_data.push_back(-value[i]);
- return *this;
- }
- template <class U>
- polynomial& operator *=(const polynomial<U>& value)
- {
- // TODO: FIXME: use O(N log(N)) algorithm!!!
- BOOST_ASSERT(value.size());
- polynomial base(*this);
- *this *= value[0];
- for(size_type i = 1; i < value.size(); ++i)
- {
- polynomial t(base);
- t *= value[i];
- size_type s = size() - i;
- for(size_type j = 0; j < s; ++j)
- {
- m_data[i+j] += t[j];
- }
- for(size_type j = s; j < t.size(); ++j)
- m_data.push_back(t[j]);
- }
- return *this;
- }
- private:
- std::vector<T> m_data;
- };
- template <class T>
- inline polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b)
- {
- polynomial<T> result(a);
- result += b;
- return result;
- }
- template <class T>
- inline polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b)
- {
- polynomial<T> result(a);
- result -= b;
- return result;
- }
- template <class T>
- inline polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b)
- {
- polynomial<T> result(a);
- result *= b;
- return result;
- }
- template <class T, class U>
- inline polynomial<T> operator + (const polynomial<T>& a, const U& b)
- {
- polynomial<T> result(a);
- result += b;
- return result;
- }
- template <class T, class U>
- inline polynomial<T> operator - (const polynomial<T>& a, const U& b)
- {
- polynomial<T> result(a);
- result -= b;
- return result;
- }
- template <class T, class U>
- inline polynomial<T> operator * (const polynomial<T>& a, const U& b)
- {
- polynomial<T> result(a);
- result *= b;
- return result;
- }
- template <class U, class T>
- inline polynomial<T> operator + (const U& a, const polynomial<T>& b)
- {
- polynomial<T> result(b);
- result += a;
- return result;
- }
- template <class U, class T>
- inline polynomial<T> operator - (const U& a, const polynomial<T>& b)
- {
- polynomial<T> result(a);
- result -= b;
- return result;
- }
- template <class U, class T>
- inline polynomial<T> operator * (const U& a, const polynomial<T>& b)
- {
- polynomial<T> result(b);
- result *= a;
- return result;
- }
- template <class charT, class traits, class T>
- inline std::basic_ostream<charT, traits>& operator << (std::basic_ostream<charT, traits>& os, const polynomial<T>& poly)
- {
- os << "{ ";
- for(unsigned i = 0; i < poly.size(); ++i)
- {
- if(i) os << ", ";
- os << poly[i];
- }
- os << " }";
- return os;
- }
- } // namespace tools
- } // namespace math
- } // namespace boost
- #endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP
|