roots.hpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. // (C) Copyright John Maddock 2006.
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP
  6. #define BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <utility>
  11. #include <boost/config/no_tr1/cmath.hpp>
  12. #include <stdexcept>
  13. #include <boost/math/tools/config.hpp>
  14. #include <boost/cstdint.hpp>
  15. #include <boost/assert.hpp>
  16. #include <boost/throw_exception.hpp>
  17. #ifdef BOOST_MSVC
  18. #pragma warning(push)
  19. #pragma warning(disable: 4512)
  20. #endif
  21. #include <boost/math/tools/tuple.hpp>
  22. #ifdef BOOST_MSVC
  23. #pragma warning(pop)
  24. #endif
  25. #include <boost/math/special_functions/sign.hpp>
  26. #include <boost/math/tools/toms748_solve.hpp>
  27. #include <boost/math/policies/error_handling.hpp>
  28. namespace boost{ namespace math{ namespace tools{
  29. namespace detail{
  30. template <class Tuple, class T>
  31. inline void unpack_0(const Tuple& t, T& val)
  32. { val = boost::math::get<0>(t); }
  33. template <class F, class T>
  34. void handle_zero_derivative(F f,
  35. T& last_f0,
  36. const T& f0,
  37. T& delta,
  38. T& result,
  39. T& guess,
  40. const T& min,
  41. const T& max)
  42. {
  43. if(last_f0 == 0)
  44. {
  45. // this must be the first iteration, pretend that we had a
  46. // previous one at either min or max:
  47. if(result == min)
  48. {
  49. guess = max;
  50. }
  51. else
  52. {
  53. guess = min;
  54. }
  55. unpack_0(f(guess), last_f0);
  56. delta = guess - result;
  57. }
  58. if(sign(last_f0) * sign(f0) < 0)
  59. {
  60. // we've crossed over so move in opposite direction to last step:
  61. if(delta < 0)
  62. {
  63. delta = (result - min) / 2;
  64. }
  65. else
  66. {
  67. delta = (result - max) / 2;
  68. }
  69. }
  70. else
  71. {
  72. // move in same direction as last step:
  73. if(delta < 0)
  74. {
  75. delta = (result - max) / 2;
  76. }
  77. else
  78. {
  79. delta = (result - min) / 2;
  80. }
  81. }
  82. }
  83. } // namespace
  84. template <class F, class T, class Tol, class Policy>
  85. std::pair<T, T> bisect(F f, T min, T max, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
  86. {
  87. T fmin = f(min);
  88. T fmax = f(max);
  89. if(fmin == 0)
  90. return std::make_pair(min, min);
  91. if(fmax == 0)
  92. return std::make_pair(max, max);
  93. //
  94. // Error checking:
  95. //
  96. static const char* function = "boost::math::tools::bisect<%1%>";
  97. if(min >= max)
  98. {
  99. policies::raise_evaluation_error(function,
  100. "Arguments in wrong order in boost::math::tools::bisect (first arg=%1%)", min, pol);
  101. }
  102. if(fmin * fmax >= 0)
  103. {
  104. policies::raise_evaluation_error(function,
  105. "No change of sign in boost::math::tools::bisect, either there is no root to find, or there are multiple roots in the interval (f(min) = %1%).", fmin, pol);
  106. }
  107. //
  108. // Three function invocations so far:
  109. //
  110. boost::uintmax_t count = max_iter;
  111. if(count < 3)
  112. count = 0;
  113. else
  114. count -= 3;
  115. while(count && (0 == tol(min, max)))
  116. {
  117. T mid = (min + max) / 2;
  118. T fmid = f(mid);
  119. if((mid == max) || (mid == min))
  120. break;
  121. if(fmid == 0)
  122. {
  123. min = max = mid;
  124. break;
  125. }
  126. else if(sign(fmid) * sign(fmin) < 0)
  127. {
  128. max = mid;
  129. fmax = fmid;
  130. }
  131. else
  132. {
  133. min = mid;
  134. fmin = fmid;
  135. }
  136. --count;
  137. }
  138. max_iter -= count;
  139. #ifdef BOOST_MATH_INSTRUMENT
  140. std::cout << "Bisection iteration, final count = " << max_iter << std::endl;
  141. static boost::uintmax_t max_count = 0;
  142. if(max_iter > max_count)
  143. {
  144. max_count = max_iter;
  145. std::cout << "Maximum iterations: " << max_iter << std::endl;
  146. }
  147. #endif
  148. return std::make_pair(min, max);
  149. }
  150. template <class F, class T, class Tol>
  151. inline std::pair<T, T> bisect(F f, T min, T max, Tol tol, boost::uintmax_t& max_iter)
  152. {
  153. return bisect(f, min, max, tol, max_iter, policies::policy<>());
  154. }
  155. template <class F, class T, class Tol>
  156. inline std::pair<T, T> bisect(F f, T min, T max, Tol tol)
  157. {
  158. boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
  159. return bisect(f, min, max, tol, m, policies::policy<>());
  160. }
  161. template <class F, class T>
  162. T newton_raphson_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter)
  163. {
  164. BOOST_MATH_STD_USING
  165. T f0(0), f1, last_f0(0);
  166. T result = guess;
  167. T factor = static_cast<T>(ldexp(1.0, 1 - digits));
  168. T delta = 1;
  169. T delta1 = tools::max_value<T>();
  170. T delta2 = tools::max_value<T>();
  171. boost::uintmax_t count(max_iter);
  172. do{
  173. last_f0 = f0;
  174. delta2 = delta1;
  175. delta1 = delta;
  176. boost::math::tie(f0, f1) = f(result);
  177. if(0 == f0)
  178. break;
  179. if(f1 == 0)
  180. {
  181. // Oops zero derivative!!!
  182. #ifdef BOOST_MATH_INSTRUMENT
  183. std::cout << "Newton iteration, zero derivative found" << std::endl;
  184. #endif
  185. detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max);
  186. }
  187. else
  188. {
  189. delta = f0 / f1;
  190. }
  191. #ifdef BOOST_MATH_INSTRUMENT
  192. std::cout << "Newton iteration, delta = " << delta << std::endl;
  193. #endif
  194. if(fabs(delta * 2) > fabs(delta2))
  195. {
  196. // last two steps haven't converged, try bisection:
  197. delta = (delta > 0) ? (result - min) / 2 : (result - max) / 2;
  198. }
  199. guess = result;
  200. result -= delta;
  201. if(result <= min)
  202. {
  203. delta = 0.5F * (guess - min);
  204. result = guess - delta;
  205. if((result == min) || (result == max))
  206. break;
  207. }
  208. else if(result >= max)
  209. {
  210. delta = 0.5F * (guess - max);
  211. result = guess - delta;
  212. if((result == min) || (result == max))
  213. break;
  214. }
  215. // update brackets:
  216. if(delta > 0)
  217. max = guess;
  218. else
  219. min = guess;
  220. }while(--count && (fabs(result * factor) < fabs(delta)));
  221. max_iter -= count;
  222. #ifdef BOOST_MATH_INSTRUMENT
  223. std::cout << "Newton Raphson iteration, final count = " << max_iter << std::endl;
  224. static boost::uintmax_t max_count = 0;
  225. if(max_iter > max_count)
  226. {
  227. max_count = max_iter;
  228. std::cout << "Maximum iterations: " << max_iter << std::endl;
  229. }
  230. #endif
  231. return result;
  232. }
  233. template <class F, class T>
  234. inline T newton_raphson_iterate(F f, T guess, T min, T max, int digits)
  235. {
  236. boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
  237. return newton_raphson_iterate(f, guess, min, max, digits, m);
  238. }
  239. template <class F, class T>
  240. T halley_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter)
  241. {
  242. BOOST_MATH_STD_USING
  243. T f0(0), f1, f2;
  244. T result = guess;
  245. T factor = static_cast<T>(ldexp(1.0, 1 - digits));
  246. T delta = (std::max)(T(10000000 * guess), T(10000000)); // arbitarily large delta
  247. T last_f0 = 0;
  248. T delta1 = delta;
  249. T delta2 = delta;
  250. bool out_of_bounds_sentry = false;
  251. #ifdef BOOST_MATH_INSTRUMENT
  252. std::cout << "Halley iteration, limit = " << factor << std::endl;
  253. #endif
  254. boost::uintmax_t count(max_iter);
  255. do{
  256. last_f0 = f0;
  257. delta2 = delta1;
  258. delta1 = delta;
  259. boost::math::tie(f0, f1, f2) = f(result);
  260. BOOST_MATH_INSTRUMENT_VARIABLE(f0);
  261. BOOST_MATH_INSTRUMENT_VARIABLE(f1);
  262. BOOST_MATH_INSTRUMENT_VARIABLE(f2);
  263. if(0 == f0)
  264. break;
  265. if((f1 == 0) && (f2 == 0))
  266. {
  267. // Oops zero derivative!!!
  268. #ifdef BOOST_MATH_INSTRUMENT
  269. std::cout << "Halley iteration, zero derivative found" << std::endl;
  270. #endif
  271. detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max);
  272. }
  273. else
  274. {
  275. if(f2 != 0)
  276. {
  277. T denom = 2 * f0;
  278. T num = 2 * f1 - f0 * (f2 / f1);
  279. BOOST_MATH_INSTRUMENT_VARIABLE(denom);
  280. BOOST_MATH_INSTRUMENT_VARIABLE(num);
  281. if((fabs(num) < 1) && (fabs(denom) >= fabs(num) * tools::max_value<T>()))
  282. {
  283. // possible overflow, use Newton step:
  284. delta = f0 / f1;
  285. }
  286. else
  287. delta = denom / num;
  288. if(delta * f1 / f0 < 0)
  289. {
  290. // Oh dear, we have a problem as Newton and Halley steps
  291. // disagree about which way we should move. Probably
  292. // there is cancelation error in the calculation of the
  293. // Halley step, or else the derivatives are so small
  294. // that their values are basically trash. We will move
  295. // in the direction indicated by a Newton step, but
  296. // by no more than twice the current guess value, otherwise
  297. // we can jump way out of bounds if we're not careful.
  298. // See https://svn.boost.org/trac/boost/ticket/8314.
  299. delta = f0 / f1;
  300. if(fabs(delta) > 2 * fabs(guess))
  301. delta = (delta < 0 ? -1 : 1) * 2 * fabs(guess);
  302. }
  303. }
  304. else
  305. delta = f0 / f1;
  306. }
  307. #ifdef BOOST_MATH_INSTRUMENT
  308. std::cout << "Halley iteration, delta = " << delta << std::endl;
  309. #endif
  310. T convergence = fabs(delta / delta2);
  311. if((convergence > 0.8) && (convergence < 2))
  312. {
  313. // last two steps haven't converged, try bisection:
  314. delta = (delta > 0) ? (result - min) / 2 : (result - max) / 2;
  315. if(fabs(delta) > result)
  316. delta = sign(delta) * result; // protect against huge jumps!
  317. // reset delta2 so that this branch will *not* be taken on the
  318. // next iteration:
  319. delta2 = delta * 3;
  320. BOOST_MATH_INSTRUMENT_VARIABLE(delta);
  321. }
  322. guess = result;
  323. result -= delta;
  324. BOOST_MATH_INSTRUMENT_VARIABLE(result);
  325. // check for out of bounds step:
  326. if(result < min)
  327. {
  328. T diff = ((fabs(min) < 1) && (fabs(result) > 1) && (tools::max_value<T>() / fabs(result) < fabs(min))) ? T(1000) : T(result / min);
  329. if(fabs(diff) < 1)
  330. diff = 1 / diff;
  331. if(!out_of_bounds_sentry && (diff > 0) && (diff < 3))
  332. {
  333. // Only a small out of bounds step, lets assume that the result
  334. // is probably approximately at min:
  335. delta = 0.99f * (guess - min);
  336. result = guess - delta;
  337. out_of_bounds_sentry = true; // only take this branch once!
  338. }
  339. else
  340. {
  341. delta = (guess - min) / 2;
  342. result = guess - delta;
  343. if((result == min) || (result == max))
  344. break;
  345. }
  346. }
  347. else if(result > max)
  348. {
  349. T diff = ((fabs(max) < 1) && (fabs(result) > 1) && (tools::max_value<T>() / fabs(result) < fabs(max))) ? T(1000) : T(result / max);
  350. if(fabs(diff) < 1)
  351. diff = 1 / diff;
  352. if(!out_of_bounds_sentry && (diff > 0) && (diff < 3))
  353. {
  354. // Only a small out of bounds step, lets assume that the result
  355. // is probably approximately at min:
  356. delta = 0.99f * (guess - max);
  357. result = guess - delta;
  358. out_of_bounds_sentry = true; // only take this branch once!
  359. }
  360. else
  361. {
  362. delta = (guess - max) / 2;
  363. result = guess - delta;
  364. if((result == min) || (result == max))
  365. break;
  366. }
  367. }
  368. // update brackets:
  369. if(delta > 0)
  370. max = guess;
  371. else
  372. min = guess;
  373. }while(--count && (fabs(result * factor) < fabs(delta)));
  374. max_iter -= count;
  375. #ifdef BOOST_MATH_INSTRUMENT
  376. std::cout << "Halley iteration, final count = " << max_iter << std::endl;
  377. #endif
  378. return result;
  379. }
  380. template <class F, class T>
  381. inline T halley_iterate(F f, T guess, T min, T max, int digits)
  382. {
  383. boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
  384. return halley_iterate(f, guess, min, max, digits, m);
  385. }
  386. template <class F, class T>
  387. T schroeder_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter)
  388. {
  389. BOOST_MATH_STD_USING
  390. T f0(0), f1, f2, last_f0(0);
  391. T result = guess;
  392. T factor = static_cast<T>(ldexp(1.0, 1 - digits));
  393. T delta = 0;
  394. T delta1 = tools::max_value<T>();
  395. T delta2 = tools::max_value<T>();
  396. #ifdef BOOST_MATH_INSTRUMENT
  397. std::cout << "Schroeder iteration, limit = " << factor << std::endl;
  398. #endif
  399. boost::uintmax_t count(max_iter);
  400. do{
  401. last_f0 = f0;
  402. delta2 = delta1;
  403. delta1 = delta;
  404. boost::math::tie(f0, f1, f2) = f(result);
  405. if(0 == f0)
  406. break;
  407. if((f1 == 0) && (f2 == 0))
  408. {
  409. // Oops zero derivative!!!
  410. #ifdef BOOST_MATH_INSTRUMENT
  411. std::cout << "Halley iteration, zero derivative found" << std::endl;
  412. #endif
  413. detail::handle_zero_derivative(f, last_f0, f0, delta, result, guess, min, max);
  414. }
  415. else
  416. {
  417. T ratio = f0 / f1;
  418. if(ratio / result < 0.1)
  419. {
  420. delta = ratio + (f2 / (2 * f1)) * ratio * ratio;
  421. // check second derivative doesn't over compensate:
  422. if(delta * ratio < 0)
  423. delta = ratio;
  424. }
  425. else
  426. delta = ratio; // fall back to Newton iteration.
  427. }
  428. if(fabs(delta * 2) > fabs(delta2))
  429. {
  430. // last two steps haven't converged, try bisection:
  431. delta = (delta > 0) ? (result - min) / 2 : (result - max) / 2;
  432. }
  433. guess = result;
  434. result -= delta;
  435. #ifdef BOOST_MATH_INSTRUMENT
  436. std::cout << "Halley iteration, delta = " << delta << std::endl;
  437. #endif
  438. if(result <= min)
  439. {
  440. delta = 0.5F * (guess - min);
  441. result = guess - delta;
  442. if((result == min) || (result == max))
  443. break;
  444. }
  445. else if(result >= max)
  446. {
  447. delta = 0.5F * (guess - max);
  448. result = guess - delta;
  449. if((result == min) || (result == max))
  450. break;
  451. }
  452. // update brackets:
  453. if(delta > 0)
  454. max = guess;
  455. else
  456. min = guess;
  457. }while(--count && (fabs(result * factor) < fabs(delta)));
  458. max_iter -= count;
  459. #ifdef BOOST_MATH_INSTRUMENT
  460. std::cout << "Schroeder iteration, final count = " << max_iter << std::endl;
  461. static boost::uintmax_t max_count = 0;
  462. if(max_iter > max_count)
  463. {
  464. max_count = max_iter;
  465. std::cout << "Maximum iterations: " << max_iter << std::endl;
  466. }
  467. #endif
  468. return result;
  469. }
  470. template <class F, class T>
  471. inline T schroeder_iterate(F f, T guess, T min, T max, int digits)
  472. {
  473. boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
  474. return schroeder_iterate(f, guess, min, max, digits, m);
  475. }
  476. } // namespace tools
  477. } // namespace math
  478. } // namespace boost
  479. #endif // BOOST_MATH_TOOLS_NEWTON_SOLVER_HPP