euler.hpp 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. /*
  2. [auto_generated]
  3. boost/numeric/odeint/stepper/euler.hpp
  4. [begin_description]
  5. Implementation of the classical explicit Euler stepper. This method is really simple and should only
  6. be used for demonstration purposes.
  7. [end_description]
  8. Copyright 2009-2011 Karsten Ahnert
  9. Copyright 2009-2011 Mario Mulansky
  10. Distributed under the Boost Software License, Version 1.0.
  11. (See accompanying file LICENSE_1_0.txt or
  12. copy at http://www.boost.org/LICENSE_1_0.txt)
  13. */
  14. #ifndef BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED
  15. #define BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED
  16. #include <boost/numeric/odeint/stepper/base/explicit_stepper_base.hpp>
  17. #include <boost/numeric/odeint/util/resizer.hpp>
  18. #include <boost/numeric/odeint/algebra/range_algebra.hpp>
  19. #include <boost/numeric/odeint/algebra/default_operations.hpp>
  20. namespace boost {
  21. namespace numeric {
  22. namespace odeint {
  23. template<
  24. class State ,
  25. class Value = double ,
  26. class Deriv = State ,
  27. class Time = Value ,
  28. class Algebra = range_algebra ,
  29. class Operations = default_operations ,
  30. class Resizer = initially_resizer
  31. >
  32. #ifndef DOXYGEN_SKIP
  33. class euler
  34. : public explicit_stepper_base<
  35. euler< State , Value , Deriv , Time , Algebra , Operations , Resizer > ,
  36. 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer >
  37. #else
  38. class euler : public explicit_stepper_base
  39. #endif
  40. {
  41. public :
  42. #ifndef DOXYGEN_SKIP
  43. typedef explicit_stepper_base< euler< State , Value , Deriv , Time , Algebra , Operations , Resizer > , 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > stepper_base_type;
  44. #else
  45. typedef explicit_stepper_base< euler< ... > , ... > stepper_base_type;
  46. #endif
  47. typedef typename stepper_base_type::state_type state_type;
  48. typedef typename stepper_base_type::value_type value_type;
  49. typedef typename stepper_base_type::deriv_type deriv_type;
  50. typedef typename stepper_base_type::time_type time_type;
  51. typedef typename stepper_base_type::algebra_type algebra_type;
  52. typedef typename stepper_base_type::operations_type operations_type;
  53. typedef typename stepper_base_type::resizer_type resizer_type;
  54. #ifndef DOXYGEN_SKIP
  55. typedef typename stepper_base_type::stepper_type stepper_type;
  56. typedef typename stepper_base_type::wrapped_state_type wrapped_state_type;
  57. typedef typename stepper_base_type::wrapped_deriv_type wrapped_deriv_type;
  58. #endif
  59. euler( const algebra_type &algebra = algebra_type() ) : stepper_base_type( algebra )
  60. { }
  61. template< class System , class StateIn , class DerivIn , class StateOut >
  62. void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
  63. {
  64. stepper_base_type::m_algebra.for_each3( out , in , dxdt ,
  65. typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , dt ) );
  66. }
  67. template< class StateOut , class StateIn1 , class StateIn2 >
  68. void calc_state( StateOut &x , time_type t , const StateIn1 &old_state , time_type t_old , const StateIn2 &current_state , time_type t_new ) const
  69. {
  70. const time_type delta = t - t_old;
  71. stepper_base_type::m_algebra.for_each3( x , old_state , stepper_base_type::m_dxdt.m_v ,
  72. typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , delta ) );
  73. }
  74. template< class StateType >
  75. void adjust_size( const StateType &x )
  76. {
  77. stepper_base_type::adjust_size( x );
  78. }
  79. };
  80. /********** DOXYGEN ***********/
  81. /**
  82. * \class euler
  83. * \brief An implementation of the Euler method.
  84. *
  85. * The Euler method is a very simply solver for ordinary differential equations. This method should not be used
  86. * for real applications. It is only useful for demonstration purposes. Step size control is not provided but
  87. * trivial continuous output is available.
  88. *
  89. * This class derives from explicit_stepper_base and inherits its interface via CRTP (current recurring template pattern),
  90. * see explicit_stepper_base
  91. *
  92. * \tparam State The state type.
  93. * \tparam Value The value type.
  94. * \tparam Deriv The type representing the time derivative of the state.
  95. * \tparam Time The time representing the independent variable - the time.
  96. * \tparam Algebra The algebra type.
  97. * \tparam Operations The operations type.
  98. * \tparam Resizer The resizer policy type.
  99. */
  100. /**
  101. * \fn euler::euler( const algebra_type &algebra )
  102. * \brief Constructs the euler class. This constructor can be used as a default
  103. * constructor of the algebra has a default constructor.
  104. * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
  105. */
  106. /**
  107. * \fn euler::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
  108. * \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.
  109. * The result is updated out of place, hence the input is in `in` and the output in `out`.
  110. * Access to this step functionality is provided by explicit_stepper_base and
  111. * `do_step_impl` should not be called directly.
  112. *
  113. * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
  114. * Simple System concept.
  115. * \param in The state of the ODE which should be solved. in is not modified in this method
  116. * \param dxdt The derivative of x at t.
  117. * \param t The value of the time, at which the step should be performed.
  118. * \param out The result of the step is written in out.
  119. * \param dt The step size.
  120. */
  121. /**
  122. * \fn euler::calc_state( StateOut &x , time_type t , const StateIn1 &old_state , time_type t_old , const StateIn2 &current_state , time_type t_new ) const
  123. * \brief This method is used for continuous output and it calculates the state `x` at a time `t` from the
  124. * knowledge of two states `old_state` and `current_state` at time points `t_old` and `t_new`.
  125. */
  126. /**
  127. * \fn euler::adjust_size( const StateType &x )
  128. * \brief Adjust the size of all temporaries in the stepper manually.
  129. * \param x A state from which the size of the temporaries to be resized is deduced.
  130. */
  131. } // odeint
  132. } // numeric
  133. } // boost
  134. #endif // BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED