gmp.hpp 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // Copyright 2011 John Maddock. Distributed under the Boost
  3. // Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_ER_GMP_BACKEND_HPP
  6. #define BOOST_MATH_ER_GMP_BACKEND_HPP
  7. #include <boost/multiprecision/number.hpp>
  8. #include <boost/multiprecision/detail/integer_ops.hpp>
  9. #include <boost/multiprecision/detail/big_lanczos.hpp>
  10. #include <boost/multiprecision/detail/digits.hpp>
  11. #include <boost/math/special_functions/fpclassify.hpp>
  12. #include <boost/cstdint.hpp>
  13. #ifdef BOOST_MSVC
  14. # pragma warning(push)
  15. # pragma warning(disable:4127)
  16. #endif
  17. #include <gmp.h>
  18. #ifdef BOOST_MSVC
  19. # pragma warning(pop)
  20. #endif
  21. #include <cmath>
  22. #include <limits>
  23. #include <climits>
  24. namespace boost{
  25. namespace multiprecision{
  26. namespace backends{
  27. #ifdef BOOST_MSVC
  28. // warning C4127: conditional expression is constant
  29. #pragma warning(push)
  30. #pragma warning(disable:4127)
  31. #endif
  32. template <unsigned digits10>
  33. struct gmp_float;
  34. struct gmp_int;
  35. struct gmp_rational;
  36. } // namespace backends
  37. template<>
  38. struct number_category<backends::gmp_int> : public mpl::int_<number_kind_integer>{};
  39. template<>
  40. struct number_category<backends::gmp_rational> : public mpl::int_<number_kind_rational>{};
  41. template <unsigned digits10>
  42. struct number_category<backends::gmp_float<digits10> > : public mpl::int_<number_kind_floating_point>{};
  43. namespace backends{
  44. //
  45. // Within this file, the only functions we mark as noexcept are those that manipulate
  46. // (but don't create) an mpf_t. All other types may allocate at pretty much any time
  47. // via a user-supplied allocator, and therefore throw.
  48. //
  49. namespace detail{
  50. template <unsigned digits10>
  51. struct gmp_float_imp
  52. {
  53. typedef mpl::list<long, long long> signed_types;
  54. typedef mpl::list<unsigned long, unsigned long long> unsigned_types;
  55. typedef mpl::list<double, long double> float_types;
  56. typedef long exponent_type;
  57. gmp_float_imp() BOOST_NOEXCEPT {}
  58. gmp_float_imp(const gmp_float_imp& o)
  59. {
  60. //
  61. // We have to do an init followed by a set here, otherwise *this may be at
  62. // a lower precision than o: seems like mpf_init_set copies just enough bits
  63. // to get the right value, but if it's then used in further calculations
  64. // things go badly wrong!!
  65. //
  66. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  67. if(o.m_data[0]._mp_d)
  68. mpf_set(m_data, o.m_data);
  69. }
  70. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  71. gmp_float_imp(gmp_float_imp&& o) BOOST_NOEXCEPT
  72. {
  73. m_data[0] = o.m_data[0];
  74. o.m_data[0]._mp_d = 0;
  75. }
  76. #endif
  77. gmp_float_imp& operator = (const gmp_float_imp& o)
  78. {
  79. if(m_data[0]._mp_d == 0)
  80. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  81. if(o.m_data[0]._mp_d)
  82. mpf_set(m_data, o.m_data);
  83. return *this;
  84. }
  85. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  86. gmp_float_imp& operator = (gmp_float_imp&& o) BOOST_NOEXCEPT
  87. {
  88. mpf_swap(m_data, o.m_data);
  89. return *this;
  90. }
  91. #endif
  92. gmp_float_imp& operator = (unsigned long long i)
  93. {
  94. if(m_data[0]._mp_d == 0)
  95. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  96. unsigned long long mask = ((1uLL << std::numeric_limits<unsigned>::digits) - 1);
  97. unsigned shift = 0;
  98. mpf_t t;
  99. mpf_init2(t, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  100. mpf_set_ui(m_data, 0);
  101. while(i)
  102. {
  103. mpf_set_ui(t, static_cast<unsigned>(i & mask));
  104. if(shift)
  105. mpf_mul_2exp(t, t, shift);
  106. mpf_add(m_data, m_data, t);
  107. shift += std::numeric_limits<unsigned>::digits;
  108. i >>= std::numeric_limits<unsigned>::digits;
  109. }
  110. mpf_clear(t);
  111. return *this;
  112. }
  113. gmp_float_imp& operator = (long long i)
  114. {
  115. BOOST_MP_USING_ABS
  116. if(m_data[0]._mp_d == 0)
  117. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  118. bool neg = i < 0;
  119. *this = static_cast<unsigned long long>(abs(i));
  120. if(neg)
  121. mpf_neg(m_data, m_data);
  122. return *this;
  123. }
  124. gmp_float_imp& operator = (unsigned long i)
  125. {
  126. if(m_data[0]._mp_d == 0)
  127. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  128. mpf_set_ui(m_data, i);
  129. return *this;
  130. }
  131. gmp_float_imp& operator = (long i)
  132. {
  133. if(m_data[0]._mp_d == 0)
  134. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  135. mpf_set_si(m_data, i);
  136. return *this;
  137. }
  138. gmp_float_imp& operator = (double d)
  139. {
  140. if(m_data[0]._mp_d == 0)
  141. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  142. mpf_set_d(m_data, d);
  143. return *this;
  144. }
  145. gmp_float_imp& operator = (long double a)
  146. {
  147. using std::frexp;
  148. using std::ldexp;
  149. using std::floor;
  150. if(m_data[0]._mp_d == 0)
  151. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  152. if (a == 0) {
  153. mpf_set_si(m_data, 0);
  154. return *this;
  155. }
  156. if (a == 1) {
  157. mpf_set_si(m_data, 1);
  158. return *this;
  159. }
  160. BOOST_ASSERT(!(boost::math::isinf)(a));
  161. BOOST_ASSERT(!(boost::math::isnan)(a));
  162. int e;
  163. long double f, term;
  164. mpf_set_ui(m_data, 0u);
  165. f = frexp(a, &e);
  166. static const int shift = std::numeric_limits<int>::digits - 1;
  167. while(f)
  168. {
  169. // extract int sized bits from f:
  170. f = ldexp(f, shift);
  171. term = floor(f);
  172. e -= shift;
  173. mpf_mul_2exp(m_data, m_data, shift);
  174. if(term > 0)
  175. mpf_add_ui(m_data, m_data, static_cast<unsigned>(term));
  176. else
  177. mpf_sub_ui(m_data, m_data, static_cast<unsigned>(-term));
  178. f -= term;
  179. }
  180. if(e > 0)
  181. mpf_mul_2exp(m_data, m_data, e);
  182. else if(e < 0)
  183. mpf_div_2exp(m_data, m_data, -e);
  184. return *this;
  185. }
  186. gmp_float_imp& operator = (const char* s)
  187. {
  188. if(m_data[0]._mp_d == 0)
  189. mpf_init2(m_data, multiprecision::detail::digits10_2_2(digits10 ? digits10 : get_default_precision()));
  190. if(0 != mpf_set_str(m_data, s, 10))
  191. BOOST_THROW_EXCEPTION(std::runtime_error(std::string("The string \"") + s + std::string("\"could not be interpreted as a valid floating point number.")));
  192. return *this;
  193. }
  194. void swap(gmp_float_imp& o) BOOST_NOEXCEPT
  195. {
  196. mpf_swap(m_data, o.m_data);
  197. }
  198. std::string str(std::streamsize digits, std::ios_base::fmtflags f)const
  199. {
  200. BOOST_ASSERT(m_data[0]._mp_d);
  201. bool scientific = (f & std::ios_base::scientific) == std::ios_base::scientific;
  202. bool fixed = (f & std::ios_base::fixed) == std::ios_base::fixed;
  203. std::streamsize org_digits(digits);
  204. if(scientific && digits)
  205. ++digits;
  206. std::string result;
  207. mp_exp_t e;
  208. void *(*alloc_func_ptr) (size_t);
  209. void *(*realloc_func_ptr) (void *, size_t, size_t);
  210. void (*free_func_ptr) (void *, size_t);
  211. mp_get_memory_functions(&alloc_func_ptr, &realloc_func_ptr, &free_func_ptr);
  212. if(mpf_sgn(m_data) == 0)
  213. {
  214. e = 0;
  215. result = "0";
  216. if(fixed && digits)
  217. ++digits;
  218. }
  219. else
  220. {
  221. char* ps = mpf_get_str (0, &e, 10, static_cast<std::size_t>(digits), m_data);
  222. --e; // To match with what our formatter expects.
  223. if(fixed && e != -1)
  224. {
  225. // Oops we actually need a different number of digits to what we asked for:
  226. (*free_func_ptr)((void*)ps, std::strlen(ps) + 1);
  227. digits += e + 1;
  228. if(digits == 0)
  229. {
  230. // We need to get *all* the digits and then possibly round up,
  231. // we end up with either "0" or "1" as the result.
  232. ps = mpf_get_str (0, &e, 10, 0, m_data);
  233. --e;
  234. unsigned offset = *ps == '-' ? 1 : 0;
  235. if(ps[offset] > '5')
  236. {
  237. ++e;
  238. ps[offset] = '1';
  239. ps[offset + 1] = 0;
  240. }
  241. else if(ps[offset] == '5')
  242. {
  243. unsigned i = offset + 1;
  244. bool round_up = false;
  245. while(ps[i] != 0)
  246. {
  247. if(ps[i] != '0')
  248. {
  249. round_up = true;
  250. break;
  251. }
  252. }
  253. if(round_up)
  254. {
  255. ++e;
  256. ps[offset] = '1';
  257. ps[offset + 1] = 0;
  258. }
  259. else
  260. {
  261. ps[offset] = '0';
  262. ps[offset + 1] = 0;
  263. }
  264. }
  265. else
  266. {
  267. ps[offset] = '0';
  268. ps[offset + 1] = 0;
  269. }
  270. }
  271. else if(digits > 0)
  272. {
  273. ps = mpf_get_str (0, &e, 10, static_cast<std::size_t>(digits), m_data);
  274. --e; // To match with what our formatter expects.
  275. }
  276. else
  277. {
  278. ps = mpf_get_str (0, &e, 10, 1, m_data);
  279. --e;
  280. unsigned offset = *ps == '-' ? 1 : 0;
  281. ps[offset] = '0';
  282. ps[offset + 1] = 0;
  283. }
  284. }
  285. result = ps;
  286. (*free_func_ptr)((void*)ps, std::strlen(ps) + 1);
  287. }
  288. boost::multiprecision::detail::format_float_string(result, e, org_digits, f, mpf_sgn(m_data) == 0);
  289. return result;
  290. }
  291. ~gmp_float_imp() BOOST_NOEXCEPT
  292. {
  293. if(m_data[0]._mp_d)
  294. mpf_clear(m_data);
  295. }
  296. void negate() BOOST_NOEXCEPT
  297. {
  298. BOOST_ASSERT(m_data[0]._mp_d);
  299. mpf_neg(m_data, m_data);
  300. }
  301. int compare(const gmp_float<digits10>& o)const BOOST_NOEXCEPT
  302. {
  303. BOOST_ASSERT(m_data[0]._mp_d && o.m_data[0]._mp_d);
  304. return mpf_cmp(m_data, o.m_data);
  305. }
  306. int compare(long i)const BOOST_NOEXCEPT
  307. {
  308. BOOST_ASSERT(m_data[0]._mp_d);
  309. return mpf_cmp_si(m_data, i);
  310. }
  311. int compare(unsigned long i)const BOOST_NOEXCEPT
  312. {
  313. BOOST_ASSERT(m_data[0]._mp_d);
  314. return mpf_cmp_ui(m_data, i);
  315. }
  316. template <class V>
  317. typename enable_if<is_arithmetic<V>, int>::type compare(V v)const
  318. {
  319. gmp_float<digits10> d;
  320. d = v;
  321. return compare(d);
  322. }
  323. mpf_t& data() BOOST_NOEXCEPT
  324. {
  325. BOOST_ASSERT(m_data[0]._mp_d);
  326. return m_data;
  327. }
  328. const mpf_t& data()const BOOST_NOEXCEPT
  329. {
  330. BOOST_ASSERT(m_data[0]._mp_d);
  331. return m_data;
  332. }
  333. protected:
  334. mpf_t m_data;
  335. static unsigned& get_default_precision() BOOST_NOEXCEPT
  336. {
  337. static unsigned val = 50;
  338. return val;
  339. }
  340. };
  341. } // namespace detail
  342. struct gmp_int;
  343. struct gmp_rational;
  344. template <unsigned digits10>
  345. struct gmp_float : public detail::gmp_float_imp<digits10>
  346. {
  347. gmp_float()
  348. {
  349. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  350. }
  351. gmp_float(const gmp_float& o) : detail::gmp_float_imp<digits10>(o) {}
  352. template <unsigned D>
  353. gmp_float(const gmp_float<D>& o, typename enable_if_c<D <= digits10>::type* = 0);
  354. template <unsigned D>
  355. explicit gmp_float(const gmp_float<D>& o, typename disable_if_c<D <= digits10>::type* = 0);
  356. gmp_float(const gmp_int& o);
  357. gmp_float(const gmp_rational& o);
  358. gmp_float(const mpf_t val)
  359. {
  360. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  361. mpf_set(this->m_data, val);
  362. }
  363. gmp_float(const mpz_t val)
  364. {
  365. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  366. mpf_set_z(this->m_data, val);
  367. }
  368. gmp_float(const mpq_t val)
  369. {
  370. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  371. mpf_set_q(this->m_data, val);
  372. }
  373. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  374. gmp_float(gmp_float&& o) BOOST_NOEXCEPT : detail::gmp_float_imp<digits10>(static_cast<detail::gmp_float_imp<digits10>&&>(o)) {}
  375. #endif
  376. gmp_float& operator=(const gmp_float& o)
  377. {
  378. *static_cast<detail::gmp_float_imp<digits10>*>(this) = static_cast<detail::gmp_float_imp<digits10> const&>(o);
  379. return *this;
  380. }
  381. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  382. gmp_float& operator=(gmp_float&& o) BOOST_NOEXCEPT
  383. {
  384. *static_cast<detail::gmp_float_imp<digits10>*>(this) = static_cast<detail::gmp_float_imp<digits10>&&>(o);
  385. return *this;
  386. }
  387. #endif
  388. template <unsigned D>
  389. gmp_float& operator=(const gmp_float<D>& o);
  390. gmp_float& operator=(const gmp_int& o);
  391. gmp_float& operator=(const gmp_rational& o);
  392. gmp_float& operator=(const mpf_t val)
  393. {
  394. if(this->m_data[0]._mp_d == 0)
  395. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  396. mpf_set(this->m_data, val);
  397. return *this;
  398. }
  399. gmp_float& operator=(const mpz_t val)
  400. {
  401. if(this->m_data[0]._mp_d == 0)
  402. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  403. mpf_set_z(this->m_data, val);
  404. return *this;
  405. }
  406. gmp_float& operator=(const mpq_t val)
  407. {
  408. if(this->m_data[0]._mp_d == 0)
  409. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  410. mpf_set_q(this->m_data, val);
  411. return *this;
  412. }
  413. template <class V>
  414. gmp_float& operator=(const V& v)
  415. {
  416. *static_cast<detail::gmp_float_imp<digits10>*>(this) = v;
  417. return *this;
  418. }
  419. };
  420. template <>
  421. struct gmp_float<0> : public detail::gmp_float_imp<0>
  422. {
  423. gmp_float()
  424. {
  425. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  426. }
  427. gmp_float(const mpf_t val)
  428. {
  429. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  430. mpf_set(this->m_data, val);
  431. }
  432. gmp_float(const mpz_t val)
  433. {
  434. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  435. mpf_set_z(this->m_data, val);
  436. }
  437. gmp_float(const mpq_t val)
  438. {
  439. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  440. mpf_set_q(this->m_data, val);
  441. }
  442. gmp_float(const gmp_float& o) : detail::gmp_float_imp<0>(o) {}
  443. template <unsigned D>
  444. gmp_float(const gmp_float<D>& o)
  445. {
  446. mpf_init2(this->m_data, mpf_get_prec(o.data()));
  447. mpf_set(this->m_data, o.data());
  448. }
  449. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  450. gmp_float(gmp_float&& o) BOOST_NOEXCEPT : detail::gmp_float_imp<0>(static_cast<detail::gmp_float_imp<0>&&>(o)) {}
  451. #endif
  452. gmp_float(const gmp_int& o);
  453. gmp_float(const gmp_rational& o);
  454. gmp_float(const gmp_float& o, unsigned digits10)
  455. {
  456. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  457. mpf_set(this->m_data, o.data());
  458. }
  459. gmp_float& operator=(const gmp_float& o)
  460. {
  461. *static_cast<detail::gmp_float_imp<0>*>(this) = static_cast<detail::gmp_float_imp<0> const&>(o);
  462. return *this;
  463. }
  464. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  465. gmp_float& operator=(gmp_float&& o) BOOST_NOEXCEPT
  466. {
  467. *static_cast<detail::gmp_float_imp<0>*>(this) = static_cast<detail::gmp_float_imp<0> &&>(o);
  468. return *this;
  469. }
  470. #endif
  471. template <unsigned D>
  472. gmp_float& operator=(const gmp_float<D>& o)
  473. {
  474. if(this->m_data[0]._mp_d == 0)
  475. {
  476. mpf_init2(this->m_data, mpf_get_prec(o.data()));
  477. }
  478. else
  479. {
  480. mpf_set_prec(this->m_data, mpf_get_prec(o.data()));
  481. }
  482. mpf_set(this->m_data, o.data());
  483. return *this;
  484. }
  485. gmp_float& operator=(const gmp_int& o);
  486. gmp_float& operator=(const gmp_rational& o);
  487. gmp_float& operator=(const mpf_t val)
  488. {
  489. if(this->m_data[0]._mp_d == 0)
  490. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  491. mpf_set(this->m_data, val);
  492. return *this;
  493. }
  494. gmp_float& operator=(const mpz_t val)
  495. {
  496. if(this->m_data[0]._mp_d == 0)
  497. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  498. mpf_set_z(this->m_data, val);
  499. return *this;
  500. }
  501. gmp_float& operator=(const mpq_t val)
  502. {
  503. if(this->m_data[0]._mp_d == 0)
  504. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  505. mpf_set_q(this->m_data, val);
  506. return *this;
  507. }
  508. template <class V>
  509. gmp_float& operator=(const V& v)
  510. {
  511. *static_cast<detail::gmp_float_imp<0>*>(this) = v;
  512. return *this;
  513. }
  514. static unsigned default_precision() BOOST_NOEXCEPT
  515. {
  516. return get_default_precision();
  517. }
  518. static void default_precision(unsigned v) BOOST_NOEXCEPT
  519. {
  520. get_default_precision() = v;
  521. }
  522. unsigned precision()const BOOST_NOEXCEPT
  523. {
  524. return multiprecision::detail::digits2_2_10(mpf_get_prec(this->m_data));
  525. }
  526. void precision(unsigned digits10) BOOST_NOEXCEPT
  527. {
  528. mpf_set_prec(this->m_data, multiprecision::detail::digits10_2_2(digits10));
  529. }
  530. };
  531. template <unsigned digits10, class T>
  532. inline typename enable_if_c<is_arithmetic<T>::value, bool>::type eval_eq(const gmp_float<digits10>& a, const T& b) BOOST_NOEXCEPT
  533. {
  534. return a.compare(b) == 0;
  535. }
  536. template <unsigned digits10, class T>
  537. inline typename enable_if_c<is_arithmetic<T>::value, bool>::type eval_lt(const gmp_float<digits10>& a, const T& b) BOOST_NOEXCEPT
  538. {
  539. return a.compare(b) < 0;
  540. }
  541. template <unsigned digits10, class T>
  542. inline typename enable_if_c<is_arithmetic<T>::value, bool>::type eval_gt(const gmp_float<digits10>& a, const T& b) BOOST_NOEXCEPT
  543. {
  544. return a.compare(b) > 0;
  545. }
  546. template <unsigned D1, unsigned D2>
  547. inline void eval_add(gmp_float<D1>& result, const gmp_float<D2>& o)
  548. {
  549. mpf_add(result.data(), result.data(), o.data());
  550. }
  551. template <unsigned D1, unsigned D2>
  552. inline void eval_subtract(gmp_float<D1>& result, const gmp_float<D2>& o)
  553. {
  554. mpf_sub(result.data(), result.data(), o.data());
  555. }
  556. template <unsigned D1, unsigned D2>
  557. inline void eval_multiply(gmp_float<D1>& result, const gmp_float<D2>& o)
  558. {
  559. mpf_mul(result.data(), result.data(), o.data());
  560. }
  561. template <unsigned digits10>
  562. inline bool eval_is_zero(const gmp_float<digits10>& val) BOOST_NOEXCEPT
  563. {
  564. return mpf_sgn(val.data()) == 0;
  565. }
  566. template <unsigned D1, unsigned D2>
  567. inline void eval_divide(gmp_float<D1>& result, const gmp_float<D2>& o)
  568. {
  569. if(eval_is_zero(o))
  570. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  571. mpf_div(result.data(), result.data(), o.data());
  572. }
  573. template <unsigned digits10>
  574. inline void eval_add(gmp_float<digits10>& result, unsigned long i)
  575. {
  576. mpf_add_ui(result.data(), result.data(), i);
  577. }
  578. template <unsigned digits10>
  579. inline void eval_subtract(gmp_float<digits10>& result, unsigned long i)
  580. {
  581. mpf_sub_ui(result.data(), result.data(), i);
  582. }
  583. template <unsigned digits10>
  584. inline void eval_multiply(gmp_float<digits10>& result, unsigned long i)
  585. {
  586. mpf_mul_ui(result.data(), result.data(), i);
  587. }
  588. template <unsigned digits10>
  589. inline void eval_divide(gmp_float<digits10>& result, unsigned long i)
  590. {
  591. if(i == 0)
  592. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  593. mpf_div_ui(result.data(), result.data(), i);
  594. }
  595. template <unsigned digits10>
  596. inline void eval_add(gmp_float<digits10>& result, long i)
  597. {
  598. if(i > 0)
  599. mpf_add_ui(result.data(), result.data(), i);
  600. else
  601. mpf_sub_ui(result.data(), result.data(), std::abs(i));
  602. }
  603. template <unsigned digits10>
  604. inline void eval_subtract(gmp_float<digits10>& result, long i)
  605. {
  606. if(i > 0)
  607. mpf_sub_ui(result.data(), result.data(), i);
  608. else
  609. mpf_add_ui(result.data(), result.data(), std::abs(i));
  610. }
  611. template <unsigned digits10>
  612. inline void eval_multiply(gmp_float<digits10>& result, long i)
  613. {
  614. mpf_mul_ui(result.data(), result.data(), std::abs(i));
  615. if(i < 0)
  616. mpf_neg(result.data(), result.data());
  617. }
  618. template <unsigned digits10>
  619. inline void eval_divide(gmp_float<digits10>& result, long i)
  620. {
  621. if(i == 0)
  622. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  623. mpf_div_ui(result.data(), result.data(), std::abs(i));
  624. if(i < 0)
  625. mpf_neg(result.data(), result.data());
  626. }
  627. //
  628. // Specialised 3 arg versions of the basic operators:
  629. //
  630. template <unsigned D1, unsigned D2, unsigned D3>
  631. inline void eval_add(gmp_float<D1>& a, const gmp_float<D2>& x, const gmp_float<D3>& y)
  632. {
  633. mpf_add(a.data(), x.data(), y.data());
  634. }
  635. template <unsigned D1, unsigned D2>
  636. inline void eval_add(gmp_float<D1>& a, const gmp_float<D2>& x, unsigned long y)
  637. {
  638. mpf_add_ui(a.data(), x.data(), y);
  639. }
  640. template <unsigned D1, unsigned D2>
  641. inline void eval_add(gmp_float<D1>& a, const gmp_float<D2>& x, long y)
  642. {
  643. if(y < 0)
  644. mpf_sub_ui(a.data(), x.data(), -y);
  645. else
  646. mpf_add_ui(a.data(), x.data(), y);
  647. }
  648. template <unsigned D1, unsigned D2>
  649. inline void eval_add(gmp_float<D1>& a, unsigned long x, const gmp_float<D2>& y)
  650. {
  651. mpf_add_ui(a.data(), y.data(), x);
  652. }
  653. template <unsigned D1, unsigned D2>
  654. inline void eval_add(gmp_float<D1>& a, long x, const gmp_float<D2>& y)
  655. {
  656. if(x < 0)
  657. {
  658. mpf_ui_sub(a.data(), -x, y.data());
  659. mpf_neg(a.data(), a.data());
  660. }
  661. else
  662. mpf_add_ui(a.data(), y.data(), x);
  663. }
  664. template <unsigned D1, unsigned D2, unsigned D3>
  665. inline void eval_subtract(gmp_float<D1>& a, const gmp_float<D2>& x, const gmp_float<D3>& y)
  666. {
  667. mpf_sub(a.data(), x.data(), y.data());
  668. }
  669. template <unsigned D1, unsigned D2>
  670. inline void eval_subtract(gmp_float<D1>& a, const gmp_float<D2>& x, unsigned long y)
  671. {
  672. mpf_sub_ui(a.data(), x.data(), y);
  673. }
  674. template <unsigned D1, unsigned D2>
  675. inline void eval_subtract(gmp_float<D1>& a, const gmp_float<D2>& x, long y)
  676. {
  677. if(y < 0)
  678. mpf_add_ui(a.data(), x.data(), -y);
  679. else
  680. mpf_sub_ui(a.data(), x.data(), y);
  681. }
  682. template <unsigned D1, unsigned D2>
  683. inline void eval_subtract(gmp_float<D1>& a, unsigned long x, const gmp_float<D2>& y)
  684. {
  685. mpf_ui_sub(a.data(), x, y.data());
  686. }
  687. template <unsigned D1, unsigned D2>
  688. inline void eval_subtract(gmp_float<D1>& a, long x, const gmp_float<D2>& y)
  689. {
  690. if(x < 0)
  691. {
  692. mpf_add_ui(a.data(), y.data(), -x);
  693. mpf_neg(a.data(), a.data());
  694. }
  695. else
  696. mpf_ui_sub(a.data(), x, y.data());
  697. }
  698. template <unsigned D1, unsigned D2, unsigned D3>
  699. inline void eval_multiply(gmp_float<D1>& a, const gmp_float<D2>& x, const gmp_float<D3>& y)
  700. {
  701. mpf_mul(a.data(), x.data(), y.data());
  702. }
  703. template <unsigned D1, unsigned D2>
  704. inline void eval_multiply(gmp_float<D1>& a, const gmp_float<D2>& x, unsigned long y)
  705. {
  706. mpf_mul_ui(a.data(), x.data(), y);
  707. }
  708. template <unsigned D1, unsigned D2>
  709. inline void eval_multiply(gmp_float<D1>& a, const gmp_float<D2>& x, long y)
  710. {
  711. if(y < 0)
  712. {
  713. mpf_mul_ui(a.data(), x.data(), -y);
  714. a.negate();
  715. }
  716. else
  717. mpf_mul_ui(a.data(), x.data(), y);
  718. }
  719. template <unsigned D1, unsigned D2>
  720. inline void eval_multiply(gmp_float<D1>& a, unsigned long x, const gmp_float<D2>& y)
  721. {
  722. mpf_mul_ui(a.data(), y.data(), x);
  723. }
  724. template <unsigned D1, unsigned D2>
  725. inline void eval_multiply(gmp_float<D1>& a, long x, const gmp_float<D2>& y)
  726. {
  727. if(x < 0)
  728. {
  729. mpf_mul_ui(a.data(), y.data(), -x);
  730. mpf_neg(a.data(), a.data());
  731. }
  732. else
  733. mpf_mul_ui(a.data(), y.data(), x);
  734. }
  735. template <unsigned D1, unsigned D2, unsigned D3>
  736. inline void eval_divide(gmp_float<D1>& a, const gmp_float<D2>& x, const gmp_float<D3>& y)
  737. {
  738. if(eval_is_zero(y))
  739. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  740. mpf_div(a.data(), x.data(), y.data());
  741. }
  742. template <unsigned D1, unsigned D2>
  743. inline void eval_divide(gmp_float<D1>& a, const gmp_float<D2>& x, unsigned long y)
  744. {
  745. if(y == 0)
  746. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  747. mpf_div_ui(a.data(), x.data(), y);
  748. }
  749. template <unsigned D1, unsigned D2>
  750. inline void eval_divide(gmp_float<D1>& a, const gmp_float<D2>& x, long y)
  751. {
  752. if(y == 0)
  753. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  754. if(y < 0)
  755. {
  756. mpf_div_ui(a.data(), x.data(), -y);
  757. a.negate();
  758. }
  759. else
  760. mpf_div_ui(a.data(), x.data(), y);
  761. }
  762. template <unsigned D1, unsigned D2>
  763. inline void eval_divide(gmp_float<D1>& a, unsigned long x, const gmp_float<D2>& y)
  764. {
  765. if(eval_is_zero(y))
  766. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  767. mpf_ui_div(a.data(), x, y.data());
  768. }
  769. template <unsigned D1, unsigned D2>
  770. inline void eval_divide(gmp_float<D1>& a, long x, const gmp_float<D2>& y)
  771. {
  772. if(eval_is_zero(y))
  773. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  774. if(x < 0)
  775. {
  776. mpf_ui_div(a.data(), -x, y.data());
  777. mpf_neg(a.data(), a.data());
  778. }
  779. else
  780. mpf_ui_div(a.data(), x, y.data());
  781. }
  782. template <unsigned digits10>
  783. inline int eval_get_sign(const gmp_float<digits10>& val) BOOST_NOEXCEPT
  784. {
  785. return mpf_sgn(val.data());
  786. }
  787. template <unsigned digits10>
  788. inline void eval_convert_to(unsigned long* result, const gmp_float<digits10>& val) BOOST_NOEXCEPT
  789. {
  790. if(0 == mpf_fits_ulong_p(val.data()))
  791. *result = (std::numeric_limits<unsigned long>::max)();
  792. else
  793. *result = mpf_get_ui(val.data());
  794. }
  795. template <unsigned digits10>
  796. inline void eval_convert_to(long* result, const gmp_float<digits10>& val) BOOST_NOEXCEPT
  797. {
  798. if(0 == mpf_fits_slong_p(val.data()))
  799. {
  800. *result = (std::numeric_limits<unsigned long>::max)();
  801. *result *= mpf_sgn(val.data());
  802. }
  803. else
  804. *result = mpf_get_si(val.data());
  805. }
  806. template <unsigned digits10>
  807. inline void eval_convert_to(double* result, const gmp_float<digits10>& val) BOOST_NOEXCEPT
  808. {
  809. *result = mpf_get_d(val.data());
  810. }
  811. #ifdef BOOST_HAS_LONG_LONG
  812. template <unsigned digits10>
  813. inline void eval_convert_to(long long* result, const gmp_float<digits10>& val)
  814. {
  815. gmp_float<digits10> t(val);
  816. if(eval_get_sign(t) < 0)
  817. t.negate();
  818. long digits = std::numeric_limits<long long>::digits - std::numeric_limits<long>::digits;
  819. if(digits > 0)
  820. mpf_div_2exp(t.data(), t.data(), digits);
  821. if(!mpf_fits_slong_p(t.data()))
  822. {
  823. if(eval_get_sign(val) < 0)
  824. *result = (std::numeric_limits<long long>::min)();
  825. else
  826. *result = (std::numeric_limits<long long>::max)();
  827. return;
  828. };
  829. *result = mpf_get_si(t.data());
  830. while(digits > 0)
  831. {
  832. *result <<= digits;
  833. digits -= std::numeric_limits<unsigned long>::digits;
  834. mpf_mul_2exp(t.data(), t.data(), digits >= 0 ? std::numeric_limits<unsigned long>::digits : std::numeric_limits<unsigned long>::digits + digits);
  835. unsigned long l = mpf_get_ui(t.data());
  836. if(digits < 0)
  837. l >>= -digits;
  838. *result |= l;
  839. }
  840. if(eval_get_sign(val) < 0)
  841. *result = -*result;
  842. }
  843. template <unsigned digits10>
  844. inline void eval_convert_to(unsigned long long* result, const gmp_float<digits10>& val)
  845. {
  846. gmp_float<digits10> t(val);
  847. long digits = std::numeric_limits<long long>::digits - std::numeric_limits<long>::digits;
  848. if(digits > 0)
  849. mpf_div_2exp(t.data(), t.data(), digits);
  850. if(!mpf_fits_ulong_p(t.data()))
  851. {
  852. *result = (std::numeric_limits<long long>::max)();
  853. return;
  854. }
  855. *result = mpf_get_ui(t.data());
  856. while(digits > 0)
  857. {
  858. *result <<= digits;
  859. digits -= std::numeric_limits<unsigned long>::digits;
  860. mpf_mul_2exp(t.data(), t.data(), digits >= 0 ? std::numeric_limits<unsigned long>::digits : std::numeric_limits<unsigned long>::digits + digits);
  861. unsigned long l = mpf_get_ui(t.data());
  862. if(digits < 0)
  863. l >>= -digits;
  864. *result |= l;
  865. }
  866. }
  867. #endif
  868. //
  869. // Native non-member operations:
  870. //
  871. template <unsigned Digits10>
  872. inline void eval_sqrt(gmp_float<Digits10>& result, const gmp_float<Digits10>& val)
  873. {
  874. mpf_sqrt(result.data(), val.data());
  875. }
  876. template <unsigned Digits10>
  877. inline void eval_abs(gmp_float<Digits10>& result, const gmp_float<Digits10>& val)
  878. {
  879. mpf_abs(result.data(), val.data());
  880. }
  881. template <unsigned Digits10>
  882. inline void eval_fabs(gmp_float<Digits10>& result, const gmp_float<Digits10>& val)
  883. {
  884. mpf_abs(result.data(), val.data());
  885. }
  886. template <unsigned Digits10>
  887. inline void eval_ceil(gmp_float<Digits10>& result, const gmp_float<Digits10>& val)
  888. {
  889. mpf_ceil(result.data(), val.data());
  890. }
  891. template <unsigned Digits10>
  892. inline void eval_floor(gmp_float<Digits10>& result, const gmp_float<Digits10>& val)
  893. {
  894. mpf_floor(result.data(), val.data());
  895. }
  896. template <unsigned Digits10>
  897. inline void eval_trunc(gmp_float<Digits10>& result, const gmp_float<Digits10>& val)
  898. {
  899. mpf_trunc(result.data(), val.data());
  900. }
  901. template <unsigned Digits10>
  902. inline void eval_ldexp(gmp_float<Digits10>& result, const gmp_float<Digits10>& val, long e)
  903. {
  904. if(e > 0)
  905. mpf_mul_2exp(result.data(), val.data(), e);
  906. else if(e < 0)
  907. mpf_div_2exp(result.data(), val.data(), -e);
  908. else
  909. result = val;
  910. }
  911. template <unsigned Digits10>
  912. inline void eval_frexp(gmp_float<Digits10>& result, const gmp_float<Digits10>& val, int* e)
  913. {
  914. long v;
  915. mpf_get_d_2exp(&v, val.data());
  916. *e = v;
  917. eval_ldexp(result, val, -v);
  918. }
  919. template <unsigned Digits10>
  920. inline void eval_frexp(gmp_float<Digits10>& result, const gmp_float<Digits10>& val, long* e)
  921. {
  922. mpf_get_d_2exp(e, val.data());
  923. eval_ldexp(result, val, -*e);
  924. }
  925. struct gmp_int
  926. {
  927. typedef mpl::list<long, long long> signed_types;
  928. typedef mpl::list<unsigned long, unsigned long long> unsigned_types;
  929. typedef mpl::list<double, long double> float_types;
  930. gmp_int()
  931. {
  932. mpz_init(this->m_data);
  933. }
  934. gmp_int(const gmp_int& o)
  935. {
  936. if(o.m_data[0]._mp_d)
  937. mpz_init_set(m_data, o.m_data);
  938. else
  939. mpz_init(this->m_data);
  940. }
  941. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  942. gmp_int(gmp_int&& o) BOOST_NOEXCEPT
  943. {
  944. m_data[0] = o.m_data[0];
  945. o.m_data[0]._mp_d = 0;
  946. }
  947. #endif
  948. explicit gmp_int(const mpf_t val)
  949. {
  950. mpz_init(this->m_data);
  951. mpz_set_f(this->m_data, val);
  952. }
  953. gmp_int(const mpz_t val)
  954. {
  955. mpz_init_set(this->m_data, val);
  956. }
  957. explicit gmp_int(const mpq_t val)
  958. {
  959. mpz_init(this->m_data);
  960. mpz_set_q(this->m_data, val);
  961. }
  962. template <unsigned Digits10>
  963. explicit gmp_int(const gmp_float<Digits10>& o)
  964. {
  965. mpz_init(this->m_data);
  966. mpz_set_f(this->m_data, o.data());
  967. }
  968. explicit gmp_int(const gmp_rational& o);
  969. gmp_int& operator = (const gmp_int& o)
  970. {
  971. if(m_data[0]._mp_d == 0)
  972. mpz_init(this->m_data);
  973. mpz_set(m_data, o.m_data);
  974. return *this;
  975. }
  976. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  977. gmp_int& operator = (gmp_int&& o) BOOST_NOEXCEPT
  978. {
  979. mpz_swap(m_data, o.m_data);
  980. return *this;
  981. }
  982. #endif
  983. gmp_int& operator = (unsigned long long i)
  984. {
  985. if(m_data[0]._mp_d == 0)
  986. mpz_init(this->m_data);
  987. unsigned long long mask = ((1uLL << std::numeric_limits<unsigned>::digits) - 1);
  988. unsigned shift = 0;
  989. mpz_t t;
  990. mpz_set_ui(m_data, 0);
  991. mpz_init_set_ui(t, 0);
  992. while(i)
  993. {
  994. mpz_set_ui(t, static_cast<unsigned>(i & mask));
  995. if(shift)
  996. mpz_mul_2exp(t, t, shift);
  997. mpz_add(m_data, m_data, t);
  998. shift += std::numeric_limits<unsigned>::digits;
  999. i >>= std::numeric_limits<unsigned>::digits;
  1000. }
  1001. mpz_clear(t);
  1002. return *this;
  1003. }
  1004. gmp_int& operator = (long long i)
  1005. {
  1006. BOOST_MP_USING_ABS
  1007. if(m_data[0]._mp_d == 0)
  1008. mpz_init(this->m_data);
  1009. bool neg = i < 0;
  1010. *this = static_cast<unsigned long long>(abs(i));
  1011. if(neg)
  1012. mpz_neg(m_data, m_data);
  1013. return *this;
  1014. }
  1015. gmp_int& operator = (unsigned long i)
  1016. {
  1017. if(m_data[0]._mp_d == 0)
  1018. mpz_init(this->m_data);
  1019. mpz_set_ui(m_data, i);
  1020. return *this;
  1021. }
  1022. gmp_int& operator = (long i)
  1023. {
  1024. if(m_data[0]._mp_d == 0)
  1025. mpz_init(this->m_data);
  1026. mpz_set_si(m_data, i);
  1027. return *this;
  1028. }
  1029. gmp_int& operator = (double d)
  1030. {
  1031. if(m_data[0]._mp_d == 0)
  1032. mpz_init(this->m_data);
  1033. mpz_set_d(m_data, d);
  1034. return *this;
  1035. }
  1036. gmp_int& operator = (long double a)
  1037. {
  1038. using std::frexp;
  1039. using std::ldexp;
  1040. using std::floor;
  1041. if(m_data[0]._mp_d == 0)
  1042. mpz_init(this->m_data);
  1043. if (a == 0) {
  1044. mpz_set_si(m_data, 0);
  1045. return *this;
  1046. }
  1047. if (a == 1) {
  1048. mpz_set_si(m_data, 1);
  1049. return *this;
  1050. }
  1051. BOOST_ASSERT(!(boost::math::isinf)(a));
  1052. BOOST_ASSERT(!(boost::math::isnan)(a));
  1053. int e;
  1054. long double f, term;
  1055. mpz_set_ui(m_data, 0u);
  1056. f = frexp(a, &e);
  1057. static const int shift = std::numeric_limits<int>::digits - 1;
  1058. while(f)
  1059. {
  1060. // extract int sized bits from f:
  1061. f = ldexp(f, shift);
  1062. term = floor(f);
  1063. e -= shift;
  1064. mpz_mul_2exp(m_data, m_data, shift);
  1065. if(term > 0)
  1066. mpz_add_ui(m_data, m_data, static_cast<unsigned>(term));
  1067. else
  1068. mpz_sub_ui(m_data, m_data, static_cast<unsigned>(-term));
  1069. f -= term;
  1070. }
  1071. if(e > 0)
  1072. mpz_mul_2exp(m_data, m_data, e);
  1073. else if(e < 0)
  1074. mpz_div_2exp(m_data, m_data, -e);
  1075. return *this;
  1076. }
  1077. gmp_int& operator = (const char* s)
  1078. {
  1079. if(m_data[0]._mp_d == 0)
  1080. mpz_init(this->m_data);
  1081. std::size_t n = s ? std::strlen(s) : 0;
  1082. int radix = 10;
  1083. if(n && (*s == '0'))
  1084. {
  1085. if((n > 1) && ((s[1] == 'x') || (s[1] == 'X')))
  1086. {
  1087. radix = 16;
  1088. s +=2;
  1089. n -= 2;
  1090. }
  1091. else
  1092. {
  1093. radix = 8;
  1094. n -= 1;
  1095. }
  1096. }
  1097. if(n)
  1098. {
  1099. if(0 != mpz_set_str(m_data, s, radix))
  1100. BOOST_THROW_EXCEPTION(std::runtime_error(std::string("The string \"") + s + std::string("\"could not be interpreted as a valid integer.")));
  1101. }
  1102. else
  1103. mpz_set_ui(m_data, 0);
  1104. return *this;
  1105. }
  1106. gmp_int& operator=(const mpf_t val)
  1107. {
  1108. if(m_data[0]._mp_d == 0)
  1109. mpz_init(this->m_data);
  1110. mpz_set_f(this->m_data, val);
  1111. return *this;
  1112. }
  1113. gmp_int& operator=(const mpz_t val)
  1114. {
  1115. if(m_data[0]._mp_d == 0)
  1116. mpz_init(this->m_data);
  1117. mpz_set(this->m_data, val);
  1118. return *this;
  1119. }
  1120. gmp_int& operator=(const mpq_t val)
  1121. {
  1122. if(m_data[0]._mp_d == 0)
  1123. mpz_init(this->m_data);
  1124. mpz_set_q(this->m_data, val);
  1125. return *this;
  1126. }
  1127. template <unsigned Digits10>
  1128. gmp_int& operator=(const gmp_float<Digits10>& o)
  1129. {
  1130. if(m_data[0]._mp_d == 0)
  1131. mpz_init(this->m_data);
  1132. mpz_set_f(this->m_data, o.data());
  1133. return *this;
  1134. }
  1135. gmp_int& operator=(const gmp_rational& o);
  1136. void swap(gmp_int& o)
  1137. {
  1138. mpz_swap(m_data, o.m_data);
  1139. }
  1140. std::string str(std::streamsize /*digits*/, std::ios_base::fmtflags f)const
  1141. {
  1142. BOOST_ASSERT(m_data[0]._mp_d);
  1143. int base = 10;
  1144. if((f & std::ios_base::oct) == std::ios_base::oct)
  1145. base = 8;
  1146. else if((f & std::ios_base::hex) == std::ios_base::hex)
  1147. base = 16;
  1148. //
  1149. // sanity check, bases 8 and 16 are only available for positive numbers:
  1150. //
  1151. if((base != 10) && (mpz_sgn(m_data) < 0))
  1152. BOOST_THROW_EXCEPTION(std::runtime_error("Formatted output in bases 8 or 16 is only available for positive numbers"));
  1153. void *(*alloc_func_ptr) (size_t);
  1154. void *(*realloc_func_ptr) (void *, size_t, size_t);
  1155. void (*free_func_ptr) (void *, size_t);
  1156. const char* ps = mpz_get_str (0, base, m_data);
  1157. std::string s = ps;
  1158. mp_get_memory_functions(&alloc_func_ptr, &realloc_func_ptr, &free_func_ptr);
  1159. (*free_func_ptr)((void*)ps, std::strlen(ps) + 1);
  1160. if((base != 10) && (f & std::ios_base::showbase))
  1161. {
  1162. int pos = s[0] == '-' ? 1 : 0;
  1163. const char* pp = base == 8 ? "0" : "0x";
  1164. s.insert(pos, pp);
  1165. }
  1166. if((f & std::ios_base::showpos) && (s[0] != '-'))
  1167. s.insert(0, 1, '+');
  1168. return s;
  1169. }
  1170. ~gmp_int() BOOST_NOEXCEPT
  1171. {
  1172. if(m_data[0]._mp_d)
  1173. mpz_clear(m_data);
  1174. }
  1175. void negate() BOOST_NOEXCEPT
  1176. {
  1177. BOOST_ASSERT(m_data[0]._mp_d);
  1178. mpz_neg(m_data, m_data);
  1179. }
  1180. int compare(const gmp_int& o)const BOOST_NOEXCEPT
  1181. {
  1182. BOOST_ASSERT(m_data[0]._mp_d && o.m_data[0]._mp_d);
  1183. return mpz_cmp(m_data, o.m_data);
  1184. }
  1185. int compare(long i)const BOOST_NOEXCEPT
  1186. {
  1187. BOOST_ASSERT(m_data[0]._mp_d);
  1188. return mpz_cmp_si(m_data, i);
  1189. }
  1190. int compare(unsigned long i)const BOOST_NOEXCEPT
  1191. {
  1192. BOOST_ASSERT(m_data[0]._mp_d);
  1193. return mpz_cmp_ui(m_data, i);
  1194. }
  1195. template <class V>
  1196. int compare(V v)const
  1197. {
  1198. gmp_int d;
  1199. d = v;
  1200. return compare(d);
  1201. }
  1202. mpz_t& data() BOOST_NOEXCEPT
  1203. {
  1204. BOOST_ASSERT(m_data[0]._mp_d);
  1205. return m_data;
  1206. }
  1207. const mpz_t& data()const BOOST_NOEXCEPT
  1208. {
  1209. BOOST_ASSERT(m_data[0]._mp_d);
  1210. return m_data;
  1211. }
  1212. protected:
  1213. mpz_t m_data;
  1214. };
  1215. template <class T>
  1216. inline typename enable_if<is_arithmetic<T>, bool>::type eval_eq(const gmp_int& a, const T& b)
  1217. {
  1218. return a.compare(b) == 0;
  1219. }
  1220. template <class T>
  1221. inline typename enable_if<is_arithmetic<T>, bool>::type eval_lt(const gmp_int& a, const T& b)
  1222. {
  1223. return a.compare(b) < 0;
  1224. }
  1225. template <class T>
  1226. inline typename enable_if<is_arithmetic<T>, bool>::type eval_gt(const gmp_int& a, const T& b)
  1227. {
  1228. return a.compare(b) > 0;
  1229. }
  1230. inline bool eval_is_zero(const gmp_int& val)
  1231. {
  1232. return mpz_sgn(val.data()) == 0;
  1233. }
  1234. inline void eval_add(gmp_int& t, const gmp_int& o)
  1235. {
  1236. mpz_add(t.data(), t.data(), o.data());
  1237. }
  1238. inline void eval_multiply_add(gmp_int& t, const gmp_int& a, const gmp_int& b)
  1239. {
  1240. mpz_addmul(t.data(), a.data(), b.data());
  1241. }
  1242. inline void eval_multiply_subtract(gmp_int& t, const gmp_int& a, const gmp_int& b)
  1243. {
  1244. mpz_submul(t.data(), a.data(), b.data());
  1245. }
  1246. inline void eval_subtract(gmp_int& t, const gmp_int& o)
  1247. {
  1248. mpz_sub(t.data(), t.data(), o.data());
  1249. }
  1250. inline void eval_multiply(gmp_int& t, const gmp_int& o)
  1251. {
  1252. mpz_mul(t.data(), t.data(), o.data());
  1253. }
  1254. inline void eval_divide(gmp_int& t, const gmp_int& o)
  1255. {
  1256. if(eval_is_zero(o))
  1257. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  1258. mpz_tdiv_q(t.data(), t.data(), o.data());
  1259. }
  1260. inline void eval_modulus(gmp_int& t, const gmp_int& o)
  1261. {
  1262. mpz_tdiv_r(t.data(), t.data(), o.data());
  1263. }
  1264. inline void eval_add(gmp_int& t, unsigned long i)
  1265. {
  1266. mpz_add_ui(t.data(), t.data(), i);
  1267. }
  1268. inline void eval_multiply_add(gmp_int& t, const gmp_int& a, unsigned long i)
  1269. {
  1270. mpz_addmul_ui(t.data(), a.data(), i);
  1271. }
  1272. inline void eval_multiply_subtract(gmp_int& t, const gmp_int& a, unsigned long i)
  1273. {
  1274. mpz_submul_ui(t.data(), a.data(), i);
  1275. }
  1276. inline void eval_subtract(gmp_int& t, unsigned long i)
  1277. {
  1278. mpz_sub_ui(t.data(), t.data(), i);
  1279. }
  1280. inline void eval_multiply(gmp_int& t, unsigned long i)
  1281. {
  1282. mpz_mul_ui(t.data(), t.data(), i);
  1283. }
  1284. inline void eval_modulus(gmp_int& t, unsigned long i)
  1285. {
  1286. mpz_tdiv_r_ui(t.data(), t.data(), i);
  1287. }
  1288. inline void eval_divide(gmp_int& t, unsigned long i)
  1289. {
  1290. if(i == 0)
  1291. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  1292. mpz_tdiv_q_ui(t.data(), t.data(), i);
  1293. }
  1294. inline void eval_add(gmp_int& t, long i)
  1295. {
  1296. if(i > 0)
  1297. mpz_add_ui(t.data(), t.data(), i);
  1298. else
  1299. mpz_sub_ui(t.data(), t.data(), -i);
  1300. }
  1301. inline void eval_multiply_add(gmp_int& t, const gmp_int& a, long i)
  1302. {
  1303. if(i > 0)
  1304. mpz_addmul_ui(t.data(), a.data(), i);
  1305. else
  1306. mpz_submul_ui(t.data(), a.data(), -i);
  1307. }
  1308. inline void eval_multiply_subtract(gmp_int& t, const gmp_int& a, long i)
  1309. {
  1310. if(i > 0)
  1311. mpz_submul_ui(t.data(), a.data(), i);
  1312. else
  1313. mpz_addmul_ui(t.data(), a.data(), -i);
  1314. }
  1315. inline void eval_subtract(gmp_int& t, long i)
  1316. {
  1317. if(i > 0)
  1318. mpz_sub_ui(t.data(), t.data(), i);
  1319. else
  1320. mpz_add_ui(t.data(), t.data(), -i);
  1321. }
  1322. inline void eval_multiply(gmp_int& t, long i)
  1323. {
  1324. mpz_mul_ui(t.data(), t.data(), std::abs(i));
  1325. if(i < 0)
  1326. mpz_neg(t.data(), t.data());
  1327. }
  1328. inline void eval_modulus(gmp_int& t, long i)
  1329. {
  1330. mpz_tdiv_r_ui(t.data(), t.data(), std::abs(i));
  1331. }
  1332. inline void eval_divide(gmp_int& t, long i)
  1333. {
  1334. if(i == 0)
  1335. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  1336. mpz_tdiv_q_ui(t.data(), t.data(), std::abs(i));
  1337. if(i < 0)
  1338. mpz_neg(t.data(), t.data());
  1339. }
  1340. template <class UI>
  1341. inline void eval_left_shift(gmp_int& t, UI i)
  1342. {
  1343. mpz_mul_2exp(t.data(), t.data(), static_cast<unsigned long>(i));
  1344. }
  1345. template <class UI>
  1346. inline void eval_right_shift(gmp_int& t, UI i)
  1347. {
  1348. mpz_fdiv_q_2exp(t.data(), t.data(), static_cast<unsigned long>(i));
  1349. }
  1350. template <class UI>
  1351. inline void eval_left_shift(gmp_int& t, const gmp_int& v, UI i)
  1352. {
  1353. mpz_mul_2exp(t.data(), v.data(), static_cast<unsigned long>(i));
  1354. }
  1355. template <class UI>
  1356. inline void eval_right_shift(gmp_int& t, const gmp_int& v, UI i)
  1357. {
  1358. mpz_fdiv_q_2exp(t.data(), v.data(), static_cast<unsigned long>(i));
  1359. }
  1360. inline void eval_bitwise_and(gmp_int& result, const gmp_int& v)
  1361. {
  1362. mpz_and(result.data(), result.data(), v.data());
  1363. }
  1364. inline void eval_bitwise_or(gmp_int& result, const gmp_int& v)
  1365. {
  1366. mpz_ior(result.data(), result.data(), v.data());
  1367. }
  1368. inline void eval_bitwise_xor(gmp_int& result, const gmp_int& v)
  1369. {
  1370. mpz_xor(result.data(), result.data(), v.data());
  1371. }
  1372. inline void eval_add(gmp_int& t, const gmp_int& p, const gmp_int& o)
  1373. {
  1374. mpz_add(t.data(), p.data(), o.data());
  1375. }
  1376. inline void eval_subtract(gmp_int& t, const gmp_int& p, const gmp_int& o)
  1377. {
  1378. mpz_sub(t.data(), p.data(), o.data());
  1379. }
  1380. inline void eval_multiply(gmp_int& t, const gmp_int& p, const gmp_int& o)
  1381. {
  1382. mpz_mul(t.data(), p.data(), o.data());
  1383. }
  1384. inline void eval_divide(gmp_int& t, const gmp_int& p, const gmp_int& o)
  1385. {
  1386. if(eval_is_zero(o))
  1387. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  1388. mpz_tdiv_q(t.data(), p.data(), o.data());
  1389. }
  1390. inline void eval_modulus(gmp_int& t, const gmp_int& p, const gmp_int& o)
  1391. {
  1392. mpz_tdiv_r(t.data(), p.data(), o.data());
  1393. }
  1394. inline void eval_add(gmp_int& t, const gmp_int& p, unsigned long i)
  1395. {
  1396. mpz_add_ui(t.data(), p.data(), i);
  1397. }
  1398. inline void eval_subtract(gmp_int& t, const gmp_int& p, unsigned long i)
  1399. {
  1400. mpz_sub_ui(t.data(), p.data(), i);
  1401. }
  1402. inline void eval_multiply(gmp_int& t, const gmp_int& p, unsigned long i)
  1403. {
  1404. mpz_mul_ui(t.data(), p.data(), i);
  1405. }
  1406. inline void eval_modulus(gmp_int& t, const gmp_int& p, unsigned long i)
  1407. {
  1408. mpz_tdiv_r_ui(t.data(), p.data(), i);
  1409. }
  1410. inline void eval_divide(gmp_int& t, const gmp_int& p, unsigned long i)
  1411. {
  1412. if(i == 0)
  1413. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  1414. mpz_tdiv_q_ui(t.data(), p.data(), i);
  1415. }
  1416. inline void eval_add(gmp_int& t, const gmp_int& p, long i)
  1417. {
  1418. if(i > 0)
  1419. mpz_add_ui(t.data(), p.data(), i);
  1420. else
  1421. mpz_sub_ui(t.data(), p.data(), -i);
  1422. }
  1423. inline void eval_subtract(gmp_int& t, const gmp_int& p, long i)
  1424. {
  1425. if(i > 0)
  1426. mpz_sub_ui(t.data(), p.data(), i);
  1427. else
  1428. mpz_add_ui(t.data(), p.data(), -i);
  1429. }
  1430. inline void eval_multiply(gmp_int& t, const gmp_int& p, long i)
  1431. {
  1432. mpz_mul_ui(t.data(), p.data(), std::abs(i));
  1433. if(i < 0)
  1434. mpz_neg(t.data(), t.data());
  1435. }
  1436. inline void eval_modulus(gmp_int& t, const gmp_int& p, long i)
  1437. {
  1438. mpz_tdiv_r_ui(t.data(), p.data(), std::abs(i));
  1439. }
  1440. inline void eval_divide(gmp_int& t, const gmp_int& p, long i)
  1441. {
  1442. if(i == 0)
  1443. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  1444. mpz_tdiv_q_ui(t.data(), p.data(), std::abs(i));
  1445. if(i < 0)
  1446. mpz_neg(t.data(), t.data());
  1447. }
  1448. inline void eval_bitwise_and(gmp_int& result, const gmp_int& u, const gmp_int& v)
  1449. {
  1450. mpz_and(result.data(), u.data(), v.data());
  1451. }
  1452. inline void eval_bitwise_or(gmp_int& result, const gmp_int& u, const gmp_int& v)
  1453. {
  1454. mpz_ior(result.data(), u.data(), v.data());
  1455. }
  1456. inline void eval_bitwise_xor(gmp_int& result, const gmp_int& u, const gmp_int& v)
  1457. {
  1458. mpz_xor(result.data(), u.data(), v.data());
  1459. }
  1460. inline void eval_complement(gmp_int& result, const gmp_int& u)
  1461. {
  1462. mpz_com(result.data(), u.data());
  1463. }
  1464. inline int eval_get_sign(const gmp_int& val)
  1465. {
  1466. return mpz_sgn(val.data());
  1467. }
  1468. inline void eval_convert_to(unsigned long* result, const gmp_int& val)
  1469. {
  1470. if(0 == mpz_fits_ulong_p(val.data()))
  1471. {
  1472. *result = (std::numeric_limits<unsigned long>::max)();
  1473. }
  1474. else
  1475. *result = mpz_get_ui(val.data());
  1476. }
  1477. inline void eval_convert_to(long* result, const gmp_int& val)
  1478. {
  1479. if(0 == mpz_fits_slong_p(val.data()))
  1480. {
  1481. *result = (std::numeric_limits<unsigned long>::max)();
  1482. *result *= mpz_sgn(val.data());
  1483. }
  1484. else
  1485. *result = mpz_get_si(val.data());
  1486. }
  1487. inline void eval_convert_to(double* result, const gmp_int& val)
  1488. {
  1489. *result = mpz_get_d(val.data());
  1490. }
  1491. inline void eval_abs(gmp_int& result, const gmp_int& val)
  1492. {
  1493. mpz_abs(result.data(), val.data());
  1494. }
  1495. inline void eval_gcd(gmp_int& result, const gmp_int& a, const gmp_int& b)
  1496. {
  1497. mpz_gcd(result.data(), a.data(), b.data());
  1498. }
  1499. inline void eval_lcm(gmp_int& result, const gmp_int& a, const gmp_int& b)
  1500. {
  1501. mpz_lcm(result.data(), a.data(), b.data());
  1502. }
  1503. template <class I>
  1504. inline typename enable_if_c<(is_unsigned<I>::value && (sizeof(I) <= sizeof(unsigned long)))>::type eval_gcd(gmp_int& result, const gmp_int& a, const I b)
  1505. {
  1506. mpz_gcd_ui(result.data(), a.data(), b);
  1507. }
  1508. template <class I>
  1509. inline typename enable_if_c<(is_unsigned<I>::value && (sizeof(I) <= sizeof(unsigned long)))>::type eval_lcm(gmp_int& result, const gmp_int& a, const I b)
  1510. {
  1511. mpz_lcm_ui(result.data(), a.data(), b);
  1512. }
  1513. template <class I>
  1514. inline typename enable_if_c<(is_signed<I>::value && (sizeof(I) <= sizeof(long)))>::type eval_gcd(gmp_int& result, const gmp_int& a, const I b)
  1515. {
  1516. mpz_gcd_ui(result.data(), a.data(), std::abs(b));
  1517. }
  1518. template <class I>
  1519. inline typename enable_if_c<is_signed<I>::value && ((sizeof(I) <= sizeof(long)))>::type eval_lcm(gmp_int& result, const gmp_int& a, const I b)
  1520. {
  1521. mpz_lcm_ui(result.data(), a.data(), std::abs(b));
  1522. }
  1523. inline void eval_integer_sqrt(gmp_int& s, gmp_int& r, const gmp_int& x)
  1524. {
  1525. mpz_sqrtrem(s.data(), r.data(), x.data());
  1526. }
  1527. inline unsigned eval_lsb(const gmp_int& val)
  1528. {
  1529. int c = eval_get_sign(val);
  1530. if(c == 0)
  1531. {
  1532. BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
  1533. }
  1534. if(c < 0)
  1535. {
  1536. BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
  1537. }
  1538. return mpz_scan1(val.data(), 0);
  1539. }
  1540. inline unsigned eval_msb(const gmp_int& val)
  1541. {
  1542. int c = eval_get_sign(val);
  1543. if(c == 0)
  1544. {
  1545. BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
  1546. }
  1547. if(c < 0)
  1548. {
  1549. BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
  1550. }
  1551. return mpz_sizeinbase(val.data(), 2) - 1;
  1552. }
  1553. inline bool eval_bit_test(const gmp_int& val, unsigned index)
  1554. {
  1555. return mpz_tstbit(val.data(), index) ? true : false;
  1556. }
  1557. inline void eval_bit_set(gmp_int& val, unsigned index)
  1558. {
  1559. mpz_setbit(val.data(), index);
  1560. }
  1561. inline void eval_bit_unset(gmp_int& val, unsigned index)
  1562. {
  1563. mpz_clrbit(val.data(), index);
  1564. }
  1565. inline void eval_bit_flip(gmp_int& val, unsigned index)
  1566. {
  1567. mpz_combit(val.data(), index);
  1568. }
  1569. inline void eval_qr(const gmp_int& x, const gmp_int& y,
  1570. gmp_int& q, gmp_int& r)
  1571. {
  1572. mpz_tdiv_qr(q.data(), r.data(), x.data(), y.data());
  1573. }
  1574. template <class Integer>
  1575. inline typename enable_if<is_unsigned<Integer>, Integer>::type eval_integer_modulus(const gmp_int& x, Integer val)
  1576. {
  1577. if((sizeof(Integer) <= sizeof(long)) || (val <= (std::numeric_limits<unsigned long>::max)()))
  1578. {
  1579. return mpz_tdiv_ui(x.data(), val);
  1580. }
  1581. else
  1582. {
  1583. return default_ops::eval_integer_modulus(x, val);
  1584. }
  1585. }
  1586. template <class Integer>
  1587. inline typename enable_if<is_signed<Integer>, Integer>::type eval_integer_modulus(const gmp_int& x, Integer val)
  1588. {
  1589. typedef typename make_unsigned<Integer>::type unsigned_type;
  1590. return eval_integer_modulus(x, static_cast<unsigned_type>(std::abs(val)));
  1591. }
  1592. inline void eval_powm(gmp_int& result, const gmp_int& base, const gmp_int& p, const gmp_int& m)
  1593. {
  1594. if(eval_get_sign(p) < 0)
  1595. {
  1596. BOOST_THROW_EXCEPTION(std::runtime_error("powm requires a positive exponent."));
  1597. }
  1598. mpz_powm(result.data(), base.data(), p.data(), m.data());
  1599. }
  1600. template <class Integer>
  1601. inline typename enable_if<
  1602. mpl::and_<
  1603. is_unsigned<Integer>,
  1604. mpl::bool_<sizeof(Integer) <= sizeof(unsigned long)>
  1605. >
  1606. >::type eval_powm(gmp_int& result, const gmp_int& base, Integer p, const gmp_int& m)
  1607. {
  1608. mpz_powm_ui(result.data(), base.data(), p, m.data());
  1609. }
  1610. template <class Integer>
  1611. inline typename enable_if<
  1612. mpl::and_<
  1613. is_signed<Integer>,
  1614. mpl::bool_<sizeof(Integer) <= sizeof(unsigned long)>
  1615. >
  1616. >::type eval_powm(gmp_int& result, const gmp_int& base, Integer p, const gmp_int& m)
  1617. {
  1618. if(p < 0)
  1619. {
  1620. BOOST_THROW_EXCEPTION(std::runtime_error("powm requires a positive exponent."));
  1621. }
  1622. mpz_powm_ui(result.data(), base.data(), p, m.data());
  1623. }
  1624. struct gmp_rational;
  1625. void eval_add(gmp_rational& t, const gmp_rational& o);
  1626. struct gmp_rational
  1627. {
  1628. typedef mpl::list<long, long long> signed_types;
  1629. typedef mpl::list<unsigned long, unsigned long long> unsigned_types;
  1630. typedef mpl::list<double, long double> float_types;
  1631. gmp_rational()
  1632. {
  1633. mpq_init(this->m_data);
  1634. }
  1635. gmp_rational(const gmp_rational& o)
  1636. {
  1637. mpq_init(m_data);
  1638. if(o.m_data[0]._mp_num._mp_d)
  1639. mpq_set(m_data, o.m_data);
  1640. }
  1641. gmp_rational(const gmp_int& o)
  1642. {
  1643. mpq_init(m_data);
  1644. mpq_set_z(m_data, o.data());
  1645. }
  1646. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  1647. gmp_rational(gmp_rational&& o) BOOST_NOEXCEPT
  1648. {
  1649. m_data[0]._mp_num = o.data()[0]._mp_num;
  1650. m_data[0]._mp_den = o.data()[0]._mp_den;
  1651. o.m_data[0]._mp_num._mp_d = 0;
  1652. o.m_data[0]._mp_den._mp_d = 0;
  1653. }
  1654. #endif
  1655. gmp_rational(const mpq_t o)
  1656. {
  1657. mpq_init(m_data);
  1658. mpq_set(m_data, o);
  1659. }
  1660. gmp_rational(const mpz_t o)
  1661. {
  1662. mpq_init(m_data);
  1663. mpq_set_z(m_data, o);
  1664. }
  1665. gmp_rational& operator = (const gmp_rational& o)
  1666. {
  1667. if(m_data[0]._mp_den._mp_d == 0)
  1668. mpq_init(m_data);
  1669. mpq_set(m_data, o.m_data);
  1670. return *this;
  1671. }
  1672. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  1673. gmp_rational& operator = (gmp_rational&& o) BOOST_NOEXCEPT
  1674. {
  1675. mpq_swap(m_data, o.m_data);
  1676. return *this;
  1677. }
  1678. #endif
  1679. gmp_rational& operator = (unsigned long long i)
  1680. {
  1681. if(m_data[0]._mp_den._mp_d == 0)
  1682. mpq_init(m_data);
  1683. unsigned long long mask = ((1uLL << std::numeric_limits<unsigned>::digits) - 1);
  1684. unsigned shift = 0;
  1685. mpq_t t;
  1686. mpq_set_ui(m_data, 0, 1);
  1687. mpq_init(t);
  1688. while(i)
  1689. {
  1690. mpq_set_ui(t, static_cast<unsigned>(i & mask), 1);
  1691. if(shift)
  1692. mpq_mul_2exp(t, t, shift);
  1693. mpq_add(m_data, m_data, t);
  1694. shift += std::numeric_limits<unsigned>::digits;
  1695. i >>= std::numeric_limits<unsigned>::digits;
  1696. }
  1697. mpq_clear(t);
  1698. return *this;
  1699. }
  1700. gmp_rational& operator = (long long i)
  1701. {
  1702. BOOST_MP_USING_ABS
  1703. if(m_data[0]._mp_den._mp_d == 0)
  1704. mpq_init(m_data);
  1705. bool neg = i < 0;
  1706. *this = static_cast<unsigned long long>(abs(i));
  1707. if(neg)
  1708. mpq_neg(m_data, m_data);
  1709. return *this;
  1710. }
  1711. gmp_rational& operator = (unsigned long i)
  1712. {
  1713. if(m_data[0]._mp_den._mp_d == 0)
  1714. mpq_init(m_data);
  1715. mpq_set_ui(m_data, i, 1);
  1716. return *this;
  1717. }
  1718. gmp_rational& operator = (long i)
  1719. {
  1720. if(m_data[0]._mp_den._mp_d == 0)
  1721. mpq_init(m_data);
  1722. mpq_set_si(m_data, i, 1);
  1723. return *this;
  1724. }
  1725. gmp_rational& operator = (double d)
  1726. {
  1727. if(m_data[0]._mp_den._mp_d == 0)
  1728. mpq_init(m_data);
  1729. mpq_set_d(m_data, d);
  1730. return *this;
  1731. }
  1732. gmp_rational& operator = (long double a)
  1733. {
  1734. using std::frexp;
  1735. using std::ldexp;
  1736. using std::floor;
  1737. using default_ops::eval_add;
  1738. using default_ops::eval_subtract;
  1739. if(m_data[0]._mp_den._mp_d == 0)
  1740. mpq_init(m_data);
  1741. if (a == 0) {
  1742. mpq_set_si(m_data, 0, 1);
  1743. return *this;
  1744. }
  1745. if (a == 1) {
  1746. mpq_set_si(m_data, 1, 1);
  1747. return *this;
  1748. }
  1749. BOOST_ASSERT(!(boost::math::isinf)(a));
  1750. BOOST_ASSERT(!(boost::math::isnan)(a));
  1751. int e;
  1752. long double f, term;
  1753. mpq_set_ui(m_data, 0, 1);
  1754. mpq_set_ui(m_data, 0u, 1);
  1755. gmp_rational t;
  1756. f = frexp(a, &e);
  1757. static const int shift = std::numeric_limits<int>::digits - 1;
  1758. while(f)
  1759. {
  1760. // extract int sized bits from f:
  1761. f = ldexp(f, shift);
  1762. term = floor(f);
  1763. e -= shift;
  1764. mpq_mul_2exp(m_data, m_data, shift);
  1765. t = static_cast<long>(term);
  1766. eval_add(*this, t);
  1767. f -= term;
  1768. }
  1769. if(e > 0)
  1770. mpq_mul_2exp(m_data, m_data, e);
  1771. else if(e < 0)
  1772. mpq_div_2exp(m_data, m_data, -e);
  1773. return *this;
  1774. }
  1775. gmp_rational& operator = (const char* s)
  1776. {
  1777. if(m_data[0]._mp_den._mp_d == 0)
  1778. mpq_init(m_data);
  1779. if(0 != mpq_set_str(m_data, s, 10))
  1780. BOOST_THROW_EXCEPTION(std::runtime_error(std::string("The string \"") + s + std::string("\"could not be interpreted as a valid rational number.")));
  1781. return *this;
  1782. }
  1783. gmp_rational& operator=(const gmp_int& o)
  1784. {
  1785. if(m_data[0]._mp_den._mp_d == 0)
  1786. mpq_init(m_data);
  1787. mpq_set_z(m_data, o.data());
  1788. return *this;
  1789. }
  1790. gmp_rational& operator=(const mpq_t o)
  1791. {
  1792. if(m_data[0]._mp_den._mp_d == 0)
  1793. mpq_init(m_data);
  1794. mpq_set(m_data, o);
  1795. return *this;
  1796. }
  1797. gmp_rational& operator=(const mpz_t o)
  1798. {
  1799. if(m_data[0]._mp_den._mp_d == 0)
  1800. mpq_init(m_data);
  1801. mpq_set_z(m_data, o);
  1802. return *this;
  1803. }
  1804. void swap(gmp_rational& o)
  1805. {
  1806. mpq_swap(m_data, o.m_data);
  1807. }
  1808. std::string str(std::streamsize /*digits*/, std::ios_base::fmtflags /*f*/)const
  1809. {
  1810. BOOST_ASSERT(m_data[0]._mp_num._mp_d);
  1811. // TODO make a better job of this including handling of f!!
  1812. void *(*alloc_func_ptr) (size_t);
  1813. void *(*realloc_func_ptr) (void *, size_t, size_t);
  1814. void (*free_func_ptr) (void *, size_t);
  1815. const char* ps = mpq_get_str (0, 10, m_data);
  1816. std::string s = ps;
  1817. mp_get_memory_functions(&alloc_func_ptr, &realloc_func_ptr, &free_func_ptr);
  1818. (*free_func_ptr)((void*)ps, std::strlen(ps) + 1);
  1819. return s;
  1820. }
  1821. ~gmp_rational()
  1822. {
  1823. if(m_data[0]._mp_num._mp_d || m_data[0]._mp_den._mp_d)
  1824. mpq_clear(m_data);
  1825. }
  1826. void negate()
  1827. {
  1828. BOOST_ASSERT(m_data[0]._mp_num._mp_d);
  1829. mpq_neg(m_data, m_data);
  1830. }
  1831. int compare(const gmp_rational& o)const
  1832. {
  1833. BOOST_ASSERT(m_data[0]._mp_num._mp_d && o.m_data[0]._mp_num._mp_d);
  1834. return mpq_cmp(m_data, o.m_data);
  1835. }
  1836. template <class V>
  1837. int compare(V v)const
  1838. {
  1839. gmp_rational d;
  1840. d = v;
  1841. return compare(d);
  1842. }
  1843. int compare(unsigned long v)const
  1844. {
  1845. BOOST_ASSERT(m_data[0]._mp_num._mp_d);
  1846. return mpq_cmp_ui(m_data, v, 1);
  1847. }
  1848. int compare(long v)const
  1849. {
  1850. BOOST_ASSERT(m_data[0]._mp_num._mp_d);
  1851. return mpq_cmp_si(m_data, v, 1);
  1852. }
  1853. mpq_t& data()
  1854. {
  1855. BOOST_ASSERT(m_data[0]._mp_num._mp_d);
  1856. return m_data;
  1857. }
  1858. const mpq_t& data()const
  1859. {
  1860. BOOST_ASSERT(m_data[0]._mp_num._mp_d);
  1861. return m_data;
  1862. }
  1863. protected:
  1864. mpq_t m_data;
  1865. };
  1866. inline bool eval_is_zero(const gmp_rational& val)
  1867. {
  1868. return mpq_sgn(val.data()) == 0;
  1869. }
  1870. template <class T>
  1871. inline bool eval_eq(gmp_rational& a, const T& b)
  1872. {
  1873. return a.compare(b) == 0;
  1874. }
  1875. template <class T>
  1876. inline bool eval_lt(gmp_rational& a, const T& b)
  1877. {
  1878. return a.compare(b) < 0;
  1879. }
  1880. template <class T>
  1881. inline bool eval_gt(gmp_rational& a, const T& b)
  1882. {
  1883. return a.compare(b) > 0;
  1884. }
  1885. inline void eval_add(gmp_rational& t, const gmp_rational& o)
  1886. {
  1887. mpq_add(t.data(), t.data(), o.data());
  1888. }
  1889. inline void eval_subtract(gmp_rational& t, const gmp_rational& o)
  1890. {
  1891. mpq_sub(t.data(), t.data(), o.data());
  1892. }
  1893. inline void eval_multiply(gmp_rational& t, const gmp_rational& o)
  1894. {
  1895. mpq_mul(t.data(), t.data(), o.data());
  1896. }
  1897. inline void eval_divide(gmp_rational& t, const gmp_rational& o)
  1898. {
  1899. if(eval_is_zero(o))
  1900. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  1901. mpq_div(t.data(), t.data(), o.data());
  1902. }
  1903. inline void eval_add(gmp_rational& t, const gmp_rational& p, const gmp_rational& o)
  1904. {
  1905. mpq_add(t.data(), p.data(), o.data());
  1906. }
  1907. inline void eval_subtract(gmp_rational& t, const gmp_rational& p, const gmp_rational& o)
  1908. {
  1909. mpq_sub(t.data(), p.data(), o.data());
  1910. }
  1911. inline void eval_multiply(gmp_rational& t, const gmp_rational& p, const gmp_rational& o)
  1912. {
  1913. mpq_mul(t.data(), p.data(), o.data());
  1914. }
  1915. inline void eval_divide(gmp_rational& t, const gmp_rational& p, const gmp_rational& o)
  1916. {
  1917. if(eval_is_zero(o))
  1918. BOOST_THROW_EXCEPTION(std::overflow_error("Division by zero."));
  1919. mpq_div(t.data(), p.data(), o.data());
  1920. }
  1921. inline int eval_get_sign(const gmp_rational& val)
  1922. {
  1923. return mpq_sgn(val.data());
  1924. }
  1925. inline void eval_convert_to(double* result, const gmp_rational& val)
  1926. {
  1927. *result = mpq_get_d(val.data());
  1928. }
  1929. inline void eval_convert_to(long* result, const gmp_rational& val)
  1930. {
  1931. double r;
  1932. eval_convert_to(&r, val);
  1933. *result = static_cast<long>(r);
  1934. }
  1935. inline void eval_convert_to(unsigned long* result, const gmp_rational& val)
  1936. {
  1937. double r;
  1938. eval_convert_to(&r, val);
  1939. *result = static_cast<long>(r);
  1940. }
  1941. inline void eval_abs(gmp_rational& result, const gmp_rational& val)
  1942. {
  1943. mpq_abs(result.data(), val.data());
  1944. }
  1945. inline void assign_components(gmp_rational& result, unsigned long v1, unsigned long v2)
  1946. {
  1947. mpq_set_ui(result.data(), v1, v2);
  1948. mpq_canonicalize(result.data());
  1949. }
  1950. inline void assign_components(gmp_rational& result, long v1, long v2)
  1951. {
  1952. mpq_set_si(result.data(), v1, v2);
  1953. mpq_canonicalize(result.data());
  1954. }
  1955. inline void assign_components(gmp_rational& result, gmp_int const& v1, gmp_int const& v2)
  1956. {
  1957. mpz_set(mpq_numref(result.data()), v1.data());
  1958. mpz_set(mpq_denref(result.data()), v2.data());
  1959. mpq_canonicalize(result.data());
  1960. }
  1961. //
  1962. // Some member functions that are dependent upon previous code go here:
  1963. //
  1964. template <unsigned Digits10>
  1965. template <unsigned D>
  1966. inline gmp_float<Digits10>::gmp_float(const gmp_float<D>& o, typename enable_if_c<D <= Digits10>::type*)
  1967. {
  1968. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(Digits10 ? Digits10 : this->get_default_precision()));
  1969. mpf_set(this->m_data, o.data());
  1970. }
  1971. template <unsigned Digits10>
  1972. template <unsigned D>
  1973. inline gmp_float<Digits10>::gmp_float(const gmp_float<D>& o, typename disable_if_c<D <= Digits10>::type*)
  1974. {
  1975. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(Digits10 ? Digits10 : this->get_default_precision()));
  1976. mpf_set(this->m_data, o.data());
  1977. }
  1978. template <unsigned Digits10>
  1979. inline gmp_float<Digits10>::gmp_float(const gmp_int& o)
  1980. {
  1981. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(Digits10 ? Digits10 : this->get_default_precision()));
  1982. mpf_set_z(this->data(), o.data());
  1983. }
  1984. template <unsigned Digits10>
  1985. inline gmp_float<Digits10>::gmp_float(const gmp_rational& o)
  1986. {
  1987. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(Digits10 ? Digits10 : this->get_default_precision()));
  1988. mpf_set_q(this->data(), o.data());
  1989. }
  1990. template <unsigned Digits10>
  1991. template <unsigned D>
  1992. inline gmp_float<Digits10>& gmp_float<Digits10>::operator=(const gmp_float<D>& o)
  1993. {
  1994. if(this->m_data[0]._mp_d == 0)
  1995. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(Digits10 ? Digits10 : this->get_default_precision()));
  1996. mpf_set(this->m_data, o.data());
  1997. return *this;
  1998. }
  1999. template <unsigned Digits10>
  2000. inline gmp_float<Digits10>& gmp_float<Digits10>::operator=(const gmp_int& o)
  2001. {
  2002. if(this->m_data[0]._mp_d == 0)
  2003. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(Digits10 ? Digits10 : this->get_default_precision()));
  2004. mpf_set_z(this->data(), o.data());
  2005. return *this;
  2006. }
  2007. template <unsigned Digits10>
  2008. inline gmp_float<Digits10>& gmp_float<Digits10>::operator=(const gmp_rational& o)
  2009. {
  2010. if(this->m_data[0]._mp_d == 0)
  2011. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(Digits10 ? Digits10 : this->get_default_precision()));
  2012. mpf_set_q(this->data(), o.data());
  2013. return *this;
  2014. }
  2015. inline gmp_float<0>::gmp_float(const gmp_int& o)
  2016. {
  2017. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  2018. mpf_set_z(this->data(), o.data());
  2019. }
  2020. inline gmp_float<0>::gmp_float(const gmp_rational& o)
  2021. {
  2022. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(get_default_precision()));
  2023. mpf_set_q(this->data(), o.data());
  2024. }
  2025. inline gmp_float<0>& gmp_float<0>::operator=(const gmp_int& o)
  2026. {
  2027. if(this->m_data[0]._mp_d == 0)
  2028. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(this->get_default_precision()));
  2029. mpf_set_z(this->data(), o.data());
  2030. return *this;
  2031. }
  2032. inline gmp_float<0>& gmp_float<0>::operator=(const gmp_rational& o)
  2033. {
  2034. if(this->m_data[0]._mp_d == 0)
  2035. mpf_init2(this->m_data, multiprecision::detail::digits10_2_2(this->get_default_precision()));
  2036. mpf_set_q(this->data(), o.data());
  2037. return *this;
  2038. }
  2039. inline gmp_int::gmp_int(const gmp_rational& o)
  2040. {
  2041. mpz_init(this->m_data);
  2042. mpz_set_q(this->m_data, o.data());
  2043. }
  2044. inline gmp_int& gmp_int::operator=(const gmp_rational& o)
  2045. {
  2046. if(this->m_data[0]._mp_d == 0)
  2047. mpz_init(this->m_data);
  2048. mpz_set_q(this->m_data, o.data());
  2049. return *this;
  2050. }
  2051. } //namespace backends
  2052. using boost::multiprecision::backends::gmp_int;
  2053. using boost::multiprecision::backends::gmp_rational;
  2054. using boost::multiprecision::backends::gmp_float;
  2055. template <>
  2056. struct component_type<number<gmp_rational> >
  2057. {
  2058. typedef number<gmp_int> type;
  2059. };
  2060. template <expression_template_option ET>
  2061. inline number<gmp_int, ET> numerator(const number<gmp_rational, ET>& val)
  2062. {
  2063. number<gmp_int, ET> result;
  2064. mpz_set(result.backend().data(), (mpq_numref(val.backend().data())));
  2065. return result;
  2066. }
  2067. template <expression_template_option ET>
  2068. inline number<gmp_int, ET> denominator(const number<gmp_rational, ET>& val)
  2069. {
  2070. number<gmp_int, ET> result;
  2071. mpz_set(result.backend().data(), (mpq_denref(val.backend().data())));
  2072. return result;
  2073. }
  2074. #ifdef BOOST_NO_SFINAE_EXPR
  2075. namespace detail{
  2076. template<>
  2077. struct is_explicitly_convertible<canonical<mpf_t, gmp_int>::type, gmp_int> : public mpl::true_ {};
  2078. template<>
  2079. struct is_explicitly_convertible<canonical<mpq_t, gmp_int>::type, gmp_int> : public mpl::true_ {};
  2080. template<unsigned Digits10>
  2081. struct is_explicitly_convertible<gmp_float<Digits10>, gmp_int> : public mpl::true_ {};
  2082. template<>
  2083. struct is_explicitly_convertible<gmp_rational, gmp_int> : public mpl::true_ {};
  2084. template<unsigned D1, unsigned D2>
  2085. struct is_explicitly_convertible<gmp_float<D1>, gmp_float<D2> > : public mpl::true_ {};
  2086. }
  2087. #endif
  2088. template<>
  2089. struct number_category<detail::canonical<mpz_t, gmp_int>::type> : public mpl::int_<number_kind_integer>{};
  2090. template<>
  2091. struct number_category<detail::canonical<mpq_t, gmp_rational>::type> : public mpl::int_<number_kind_rational>{};
  2092. template<>
  2093. struct number_category<detail::canonical<mpf_t, gmp_float<0> >::type> : public mpl::int_<number_kind_floating_point>{};
  2094. typedef number<gmp_float<50> > mpf_float_50;
  2095. typedef number<gmp_float<100> > mpf_float_100;
  2096. typedef number<gmp_float<500> > mpf_float_500;
  2097. typedef number<gmp_float<1000> > mpf_float_1000;
  2098. typedef number<gmp_float<0> > mpf_float;
  2099. typedef number<gmp_int > mpz_int;
  2100. typedef number<gmp_rational > mpq_rational;
  2101. }} // namespaces
  2102. namespace std{
  2103. //
  2104. // numeric_limits [partial] specializations for the types declared in this header:
  2105. //
  2106. template<unsigned Digits10, boost::multiprecision::expression_template_option ExpressionTemplates>
  2107. class numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<Digits10>, ExpressionTemplates> >
  2108. {
  2109. typedef boost::multiprecision::number<boost::multiprecision::gmp_float<Digits10>, ExpressionTemplates> number_type;
  2110. public:
  2111. BOOST_STATIC_CONSTEXPR bool is_specialized = true;
  2112. //
  2113. // min and max values chosen so as to not cause segfaults when calling
  2114. // mpf_get_str on 64-bit Linux builds. Possibly we could use larger
  2115. // exponent values elsewhere.
  2116. //
  2117. static number_type (min)()
  2118. {
  2119. initializer.do_nothing();
  2120. static std::pair<bool, number_type> value;
  2121. if(!value.first)
  2122. {
  2123. value.first = true;
  2124. value.second = 1;
  2125. mpf_div_2exp(value.second.backend().data(), value.second.backend().data(), (std::numeric_limits<mp_exp_t>::max)() / 64 + 1);
  2126. }
  2127. return value.second;
  2128. }
  2129. static number_type (max)()
  2130. {
  2131. initializer.do_nothing();
  2132. static std::pair<bool, number_type> value;
  2133. if(!value.first)
  2134. {
  2135. value.first = true;
  2136. value.second = 1;
  2137. mpf_mul_2exp(value.second.backend().data(), value.second.backend().data(), (std::numeric_limits<mp_exp_t>::max)() / 64 + 1);
  2138. }
  2139. return value.second;
  2140. }
  2141. BOOST_STATIC_CONSTEXPR number_type lowest()
  2142. {
  2143. return -(max)();
  2144. }
  2145. BOOST_STATIC_CONSTEXPR int digits = static_cast<int>((Digits10 * 1000L) / 301L + ((Digits10 * 1000L) % 301L ? 2 : 1));
  2146. BOOST_STATIC_CONSTEXPR int digits10 = Digits10;
  2147. // Have to allow for a possible extra limb inside the gmp data structure:
  2148. BOOST_STATIC_CONSTEXPR int max_digits10 = Digits10 + 2 + ((GMP_LIMB_BITS * 301L) / 1000L);
  2149. BOOST_STATIC_CONSTEXPR bool is_signed = true;
  2150. BOOST_STATIC_CONSTEXPR bool is_integer = false;
  2151. BOOST_STATIC_CONSTEXPR bool is_exact = false;
  2152. BOOST_STATIC_CONSTEXPR int radix = 2;
  2153. static number_type epsilon()
  2154. {
  2155. initializer.do_nothing();
  2156. static std::pair<bool, number_type> value;
  2157. if(!value.first)
  2158. {
  2159. value.first = true;
  2160. value.second = 1;
  2161. mpf_div_2exp(value.second.backend().data(), value.second.backend().data(), std::numeric_limits<number_type>::digits - 1);
  2162. }
  2163. return value.second;
  2164. }
  2165. // What value should this be????
  2166. static number_type round_error()
  2167. {
  2168. // returns epsilon/2
  2169. initializer.do_nothing();
  2170. static std::pair<bool, number_type> value;
  2171. if(!value.first)
  2172. {
  2173. value.first = true;
  2174. value.second = 1;
  2175. }
  2176. return value.second;
  2177. }
  2178. BOOST_STATIC_CONSTEXPR long min_exponent = LONG_MIN;
  2179. BOOST_STATIC_CONSTEXPR long min_exponent10 = (LONG_MIN / 1000) * 301L;
  2180. BOOST_STATIC_CONSTEXPR long max_exponent = LONG_MAX;
  2181. BOOST_STATIC_CONSTEXPR long max_exponent10 = (LONG_MAX / 1000) * 301L;
  2182. BOOST_STATIC_CONSTEXPR bool has_infinity = false;
  2183. BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = false;
  2184. BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
  2185. BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
  2186. BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
  2187. BOOST_STATIC_CONSTEXPR number_type infinity() { return number_type(); }
  2188. BOOST_STATIC_CONSTEXPR number_type quiet_NaN() { return number_type(); }
  2189. BOOST_STATIC_CONSTEXPR number_type signaling_NaN() { return number_type(); }
  2190. BOOST_STATIC_CONSTEXPR number_type denorm_min() { return number_type(); }
  2191. BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
  2192. BOOST_STATIC_CONSTEXPR bool is_bounded = true;
  2193. BOOST_STATIC_CONSTEXPR bool is_modulo = false;
  2194. BOOST_STATIC_CONSTEXPR bool traps = true;
  2195. BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
  2196. BOOST_STATIC_CONSTEXPR float_round_style round_style = round_indeterminate;
  2197. private:
  2198. struct data_initializer
  2199. {
  2200. data_initializer()
  2201. {
  2202. std::numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<digits10> > >::epsilon();
  2203. std::numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<digits10> > >::round_error();
  2204. (std::numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<digits10> > >::min)();
  2205. (std::numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<digits10> > >::max)();
  2206. }
  2207. void do_nothing()const{}
  2208. };
  2209. static const data_initializer initializer;
  2210. };
  2211. template<unsigned Digits10, boost::multiprecision::expression_template_option ExpressionTemplates>
  2212. const typename numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<Digits10>, ExpressionTemplates> >::data_initializer numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<Digits10>, ExpressionTemplates> >::initializer;
  2213. template<boost::multiprecision::expression_template_option ExpressionTemplates>
  2214. class numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >
  2215. {
  2216. typedef boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> number_type;
  2217. public:
  2218. BOOST_STATIC_CONSTEXPR bool is_specialized = false;
  2219. static number_type (min)() { return number_type(); }
  2220. static number_type (max)() { return number_type(); }
  2221. static number_type lowest() { return number_type(); }
  2222. BOOST_STATIC_CONSTEXPR int digits = 0;
  2223. BOOST_STATIC_CONSTEXPR int digits10 = 0;
  2224. BOOST_STATIC_CONSTEXPR int max_digits10 = 0;
  2225. BOOST_STATIC_CONSTEXPR bool is_signed = false;
  2226. BOOST_STATIC_CONSTEXPR bool is_integer = false;
  2227. BOOST_STATIC_CONSTEXPR bool is_exact = false;
  2228. BOOST_STATIC_CONSTEXPR int radix = 0;
  2229. static number_type epsilon() { return number_type(); }
  2230. static number_type round_error() { return number_type(); }
  2231. BOOST_STATIC_CONSTEXPR int min_exponent = 0;
  2232. BOOST_STATIC_CONSTEXPR int min_exponent10 = 0;
  2233. BOOST_STATIC_CONSTEXPR int max_exponent = 0;
  2234. BOOST_STATIC_CONSTEXPR int max_exponent10 = 0;
  2235. BOOST_STATIC_CONSTEXPR bool has_infinity = false;
  2236. BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = false;
  2237. BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
  2238. BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
  2239. BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
  2240. static number_type infinity() { return number_type(); }
  2241. static number_type quiet_NaN() { return number_type(); }
  2242. static number_type signaling_NaN() { return number_type(); }
  2243. static number_type denorm_min() { return number_type(); }
  2244. BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
  2245. BOOST_STATIC_CONSTEXPR bool is_bounded = false;
  2246. BOOST_STATIC_CONSTEXPR bool is_modulo = false;
  2247. BOOST_STATIC_CONSTEXPR bool traps = false;
  2248. BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
  2249. BOOST_STATIC_CONSTEXPR float_round_style round_style = round_indeterminate;
  2250. };
  2251. #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
  2252. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2253. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::digits;
  2254. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2255. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::digits10;
  2256. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2257. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::max_digits10;
  2258. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2259. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::is_signed;
  2260. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2261. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::is_integer;
  2262. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2263. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::is_exact;
  2264. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2265. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::radix;
  2266. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2267. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::min_exponent;
  2268. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2269. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::min_exponent10;
  2270. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2271. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::max_exponent;
  2272. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2273. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::max_exponent10;
  2274. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2275. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::has_infinity;
  2276. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2277. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::has_quiet_NaN;
  2278. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2279. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::has_signaling_NaN;
  2280. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2281. BOOST_CONSTEXPR_OR_CONST float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::has_denorm;
  2282. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2283. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::has_denorm_loss;
  2284. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2285. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::is_iec559;
  2286. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2287. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::is_bounded;
  2288. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2289. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::is_modulo;
  2290. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2291. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::traps;
  2292. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2293. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::tinyness_before;
  2294. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2295. BOOST_CONSTEXPR_OR_CONST float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_float<0>, ExpressionTemplates> >::round_style;
  2296. #endif
  2297. template<boost::multiprecision::expression_template_option ExpressionTemplates>
  2298. class numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >
  2299. {
  2300. typedef boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> number_type;
  2301. public:
  2302. BOOST_STATIC_CONSTEXPR bool is_specialized = true;
  2303. //
  2304. // Largest and smallest numbers are bounded only by available memory, set
  2305. // to zero:
  2306. //
  2307. static number_type (min)()
  2308. {
  2309. return number_type();
  2310. }
  2311. static number_type (max)()
  2312. {
  2313. return number_type();
  2314. }
  2315. static number_type lowest() { return (min)(); }
  2316. BOOST_STATIC_CONSTEXPR int digits = INT_MAX;
  2317. BOOST_STATIC_CONSTEXPR int digits10 = (INT_MAX / 1000) * 301L;
  2318. BOOST_STATIC_CONSTEXPR int max_digits10 = digits10 + 2;
  2319. BOOST_STATIC_CONSTEXPR bool is_signed = true;
  2320. BOOST_STATIC_CONSTEXPR bool is_integer = true;
  2321. BOOST_STATIC_CONSTEXPR bool is_exact = true;
  2322. BOOST_STATIC_CONSTEXPR int radix = 2;
  2323. static number_type epsilon() { return number_type(); }
  2324. static number_type round_error() { return number_type(); }
  2325. BOOST_STATIC_CONSTEXPR int min_exponent = 0;
  2326. BOOST_STATIC_CONSTEXPR int min_exponent10 = 0;
  2327. BOOST_STATIC_CONSTEXPR int max_exponent = 0;
  2328. BOOST_STATIC_CONSTEXPR int max_exponent10 = 0;
  2329. BOOST_STATIC_CONSTEXPR bool has_infinity = false;
  2330. BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = false;
  2331. BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
  2332. BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
  2333. BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
  2334. static number_type infinity() { return number_type(); }
  2335. static number_type quiet_NaN() { return number_type(); }
  2336. static number_type signaling_NaN() { return number_type(); }
  2337. static number_type denorm_min() { return number_type(); }
  2338. BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
  2339. BOOST_STATIC_CONSTEXPR bool is_bounded = false;
  2340. BOOST_STATIC_CONSTEXPR bool is_modulo = false;
  2341. BOOST_STATIC_CONSTEXPR bool traps = false;
  2342. BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
  2343. BOOST_STATIC_CONSTEXPR float_round_style round_style = round_toward_zero;
  2344. };
  2345. #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
  2346. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2347. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::digits;
  2348. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2349. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::digits10;
  2350. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2351. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::max_digits10;
  2352. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2353. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::is_signed;
  2354. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2355. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::is_integer;
  2356. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2357. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::is_exact;
  2358. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2359. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::radix;
  2360. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2361. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::min_exponent;
  2362. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2363. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::min_exponent10;
  2364. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2365. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::max_exponent;
  2366. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2367. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::max_exponent10;
  2368. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2369. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::has_infinity;
  2370. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2371. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::has_quiet_NaN;
  2372. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2373. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::has_signaling_NaN;
  2374. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2375. BOOST_CONSTEXPR_OR_CONST float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::has_denorm;
  2376. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2377. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::has_denorm_loss;
  2378. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2379. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::is_iec559;
  2380. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2381. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::is_bounded;
  2382. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2383. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::is_modulo;
  2384. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2385. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::traps;
  2386. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2387. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::tinyness_before;
  2388. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2389. BOOST_CONSTEXPR_OR_CONST float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_int, ExpressionTemplates> >::round_style;
  2390. #endif
  2391. template<boost::multiprecision::expression_template_option ExpressionTemplates>
  2392. class numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >
  2393. {
  2394. typedef boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> number_type;
  2395. public:
  2396. BOOST_STATIC_CONSTEXPR bool is_specialized = true;
  2397. //
  2398. // Largest and smallest numbers are bounded only by available memory, set
  2399. // to zero:
  2400. //
  2401. static number_type (min)()
  2402. {
  2403. return number_type();
  2404. }
  2405. static number_type (max)()
  2406. {
  2407. return number_type();
  2408. }
  2409. static number_type lowest() { return (min)(); }
  2410. // Digits are unbounded, use zero for now:
  2411. BOOST_STATIC_CONSTEXPR int digits = INT_MAX;
  2412. BOOST_STATIC_CONSTEXPR int digits10 = (INT_MAX / 1000) * 301L;
  2413. BOOST_STATIC_CONSTEXPR int max_digits10 = digits10 + 2;
  2414. BOOST_STATIC_CONSTEXPR bool is_signed = true;
  2415. BOOST_STATIC_CONSTEXPR bool is_integer = false;
  2416. BOOST_STATIC_CONSTEXPR bool is_exact = true;
  2417. BOOST_STATIC_CONSTEXPR int radix = 2;
  2418. static number_type epsilon() { return number_type(); }
  2419. static number_type round_error() { return number_type(); }
  2420. BOOST_STATIC_CONSTEXPR int min_exponent = 0;
  2421. BOOST_STATIC_CONSTEXPR int min_exponent10 = 0;
  2422. BOOST_STATIC_CONSTEXPR int max_exponent = 0;
  2423. BOOST_STATIC_CONSTEXPR int max_exponent10 = 0;
  2424. BOOST_STATIC_CONSTEXPR bool has_infinity = false;
  2425. BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = false;
  2426. BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
  2427. BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
  2428. BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
  2429. static number_type infinity() { return number_type(); }
  2430. static number_type quiet_NaN() { return number_type(); }
  2431. static number_type signaling_NaN() { return number_type(); }
  2432. static number_type denorm_min() { return number_type(); }
  2433. BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
  2434. BOOST_STATIC_CONSTEXPR bool is_bounded = false;
  2435. BOOST_STATIC_CONSTEXPR bool is_modulo = false;
  2436. BOOST_STATIC_CONSTEXPR bool traps = false;
  2437. BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
  2438. BOOST_STATIC_CONSTEXPR float_round_style round_style = round_toward_zero;
  2439. };
  2440. #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
  2441. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2442. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::digits;
  2443. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2444. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::digits10;
  2445. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2446. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::max_digits10;
  2447. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2448. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::is_signed;
  2449. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2450. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::is_integer;
  2451. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2452. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::is_exact;
  2453. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2454. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::radix;
  2455. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2456. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::min_exponent;
  2457. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2458. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::min_exponent10;
  2459. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2460. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::max_exponent;
  2461. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2462. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::max_exponent10;
  2463. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2464. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::has_infinity;
  2465. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2466. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::has_quiet_NaN;
  2467. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2468. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::has_signaling_NaN;
  2469. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2470. BOOST_CONSTEXPR_OR_CONST float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::has_denorm;
  2471. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2472. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::has_denorm_loss;
  2473. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2474. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::is_iec559;
  2475. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2476. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::is_bounded;
  2477. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2478. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::is_modulo;
  2479. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2480. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::traps;
  2481. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2482. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::tinyness_before;
  2483. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  2484. BOOST_CONSTEXPR_OR_CONST float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::gmp_rational, ExpressionTemplates> >::round_style;
  2485. #endif
  2486. #ifdef BOOST_MSVC
  2487. #pragma warning(pop)
  2488. #endif
  2489. } // namespace std
  2490. #endif