// CCOS.Dev.GEN.PSGHR.cpp #include #include #include #include #include "LogicDevice.h" using namespace std::placeholders; #include "Helper.JSON.hpp" #include "CCOS.Dev.Generator.PSG_HR.h" #include "LogLocalHelper.h" #include "Log4CPP.h" using namespace CCOS::Dev::Detail::Generator; namespace nsGEN = CCOS::Dev::Detail::Generator; static nsGEN::PSGHRDriver* pIODriver = nullptr; #define PSGHR_LARGE_POWER 5 #define PSGHR_SMALL_POWER 1.1 #define PSGHR_MAX_HEAT 225 #define PSGHR_MIN_MA 1.0 #define PSGHR_MAX_MA 1000.0 #define PSGHR_MIN_MS 1.0 #define PSGHR_MAX_MS 10001.0 #define PSGHR_LoopDefHBTime 1000 #define PSGHR_LoopExpHBTime 500 static const int msTimeOut_Lock = 500; #define PSGHR_Com_NormalLen 150 #define PSGHR_ETX 0x03 #define PSGHR_RESOK "$" #define Sleep(ms) std::this_thread::sleep_for(std::chrono::milliseconds(ms)) static const auto COM_SCFDllName = "libSerialSCF.so"; static const auto TCP_SCFDllName = "libTcpipSCF.so"; //Log4CPP::Logger* gLogger = nullptr; struct tFrameMapping { static const int MaxLen = 5; using cbFun = std::function ; char strHead[MaxLen]; int NbOfCharOfHead; cbFun fun; tFrameMapping(const char* str, int len, cbFun f) { assert(len < MaxLen); for (int i = 0; i < len; i++) strHead[i] = str[i]; NbOfCharOfHead = len; fun = f; } }; static std::list arFrame; static bool DecodeFrame(const char* strFrame, int length) { auto pr = [strFrame, length](const tFrameMapping& Item) { for (int i = 0; i < Item.NbOfCharOfHead; i++) { if (strFrame[i] != Item.strHead[i]) { return false; } } return true; }; auto found = std::find_if(arFrame.begin(), arFrame.end(), pr); if (found == arFrame.end()) { return false; } const auto& Item = *found; auto pc = strFrame; char data[100] = { 0 }; // 找到ETX位置(0x03) int etxPos = -1; for (int i = Item.NbOfCharOfHead; i < length - 1; i++) // length-1是因为最后一个字节是校验和 { if (strFrame[i] == 0x03) { etxPos = i; break; } } // 计算Data部分的长度 int dataLength = 0; if (etxPos != -1) { // Data长度 = ETX位置 - Command长度 dataLength = etxPos - Item.NbOfCharOfHead; } else { // 如果没找到ETX,假设Data部分到倒数第二个字节(排除校验和) dataLength = length - Item.NbOfCharOfHead - 1; } // 只复制Data部分 if (dataLength > 0 && dataLength < 100) { memcpy(data, strFrame + Item.NbOfCharOfHead, dataLength); } Item.fun(data, dataLength); return true; } //----------------------------------------------------------------------------- // PSGHRDevice //----------------------------------------------------------------------------- atomic nsGEN::PSGHRDevice::m_iLoopTime = PSGHR_LoopDefHBTime; atomic nsGEN::PSGHRDevice::m_bExtraFlag = false; static atomicHeartBeatFlag = false; nsGEN::PSGHRDevice::PSGHRDevice(std::shared_ptr center, std::shared_ptr SCF, string configfile) : super(center) , superGen() , m_SCF(SCF) , m_bConnectFlag(false) , HeartBeatFlag(false) { assert(EventCenter); m_bExtraFlag = true; //��ʼ�� m_bExpEnable = false; m_bConnectFlag = true; m_iLoopTime.store(PSGHR_LoopDefHBTime); for (int i = 0; i < 18; i++) { m_bFaultList[i] = false; } m_iMaxPower = PSGHR_LARGE_POWER; //KW MaxHeatContent = PSGHR_MAX_HEAT; //KJ string version; //if(GetVersion(version, hMyModule)) FINFO("\n===============log begin : version:{$} ===================\n", version.c_str()); //else FINFO("\n===============log begin : version:0.0.0.0 ===================\n"); //���÷��������Լ��ϸ���ֵ�ķ�Χ������ m_DoseUnit.m_KV.reset(new KVMould(0.0, 39.0, 151.0, 1.0)); m_DoseUnit.m_MA.reset(new MAMould(0.0, PSGHR_MIN_MA, PSGHR_MAX_MA, 0.1)); m_DoseUnit.m_MS.reset(new MSMould(0.0, PSGHR_MIN_MS, PSGHR_MAX_MS, 0.01)); m_DoseUnit.m_MAS.reset(new MASMould(0.0, 0.1, 1000.0, 0.01)); m_DoseUnit.m_Techmode.reset(new TECHMODEMould(AttrKey::TECHMODE_TYPE::TECHMODE_NOAEC_2P, AttrKey::TECHMODE_NOAEC_3P, AttrKey::TECHMODE_AEC_MAS_MA, 1)); m_DoseUnit.m_WS.reset(new WORKSTATIONMould(1, 0, 5, 1)); m_DoseUnit.m_Focus.reset(new FOCUSMould(AttrKey::FOCUS_TYPE::FOCUS_LARGE, AttrKey::FOCUS_SMALL, AttrKey::FOCUS_LARGE, 1)); m_DoseUnit.m_AECField.reset(new AECFIELDMould(0, 0, 111, 1)); m_DoseUnit.m_AECFilm.reset(new AECFILMMould(0, 0, 2, 1)); m_DoseUnit.m_AECDensity.reset(new AECDENSITYMould(0, -3, 3, 1)); m_DoseUnit.m_GenHE.reset(new GENHEATMould(0, 0, 100, 1)); m_DoseUnit.m_HE.reset(new TUBEHEATMould(0, 0, 100, 1)); m_DoseUnit.m_GenSynState.reset(new GENSYNSTATEMould(AttrKey::GENERATOR_RAD_OFF, AttrKey::GENERATOR_SYNC_ERR, AttrKey::GENERATOR_SYNC_MAX, 1)); m_DoseUnit.m_GenState.reset(new GENSTATEMould(0, AttrKey::GENERATOR_STATUS_SHUTDOWN, AttrKey::GENERATOR_STATUS_MAX, 1)); m_DoseUnit.m_GenTotalExpNumber.reset(new TOTALEXPNUMMould(0, 0, 9999, 1)); m_DoseUnit.m_GenTotalAcqTimes.reset(new TOTALACQTIMESMould(0, 0, 9999, 1)); m_DoseUnit.m_GenTubeCoolWaitTimes.reset(new TUBECOOLTIMEMould(0, 0, 9999, 1)); m_DoseUnit.m_GenTubeOverLoadNumber.reset(new TUBEOVERLOADNUMMould(0, 0, 9999, 1)); m_DoseUnit.m_GenCurrentExpNumber.reset(new CUREXPNUMMould(0, 0, 9999, 1)); m_DoseUnit.m_ExpMode.reset(new EXPMODEMould(AttrKey::EXPMODE_TYPE::Single)); m_DoseUnit.m_FrameRate.reset(new FRAMERATEMould(0, 0, 16, 1)); m_DoseUnit.m_FLMode.reset(new FLUModeMould(AttrKey::GENERATOR_FLUMode::GENERATOR_FLMODE_NOTFLU)); m_DoseUnit.m_BatteryChargeState.reset(new BATTERYCHARGSTATEMould(0, 0, 1, 1)); m_DoseUnit.m_TubeTargetMaterial.reset(new TUBETARGETMATERIALMould(AttrKey::TUBETARGETMATERIAL_TYPE::MO)); m_DoseUnit.m_TubeAngle.reset(new TUBEANGLEMould(0, -45, 45, 1)); m_DoseUnit.m_FLIntTime.reset(new FLUIntTimeMould(0.0, 0.0, 100.0, 0.1)); m_DoseUnit.m_FLAccTime.reset(new FLAccTimeMould(0.0, 0.0, 999.0, 0.1)); m_DoseUnit.m_FLKV.reset(new FLUKVMould(0, 40, 125, 1)); m_DoseUnit.m_FLMS.reset(new FLUMSMould(10.0, 10.0, 999999.0, 0.01)); m_DoseUnit.m_FLMA.reset(new FLUMAMould(0.5, 0.5, 99.0, 0.1)); m_DoseUnit.m_ABSStatus.reset(new FLUABSStatusMould(0, 0, 2, 1)); m_DoseUnit.m_PPS.reset(new PPSMould(0.5,0.5, 30, 0.1)); m_DoseUnit.m_DoseLevel.reset(new FLUDoseLevelMould(0, 0, 2, 1)); m_DoseUnit.m_FLMode.reset(new FLUModeMould(0, 0, 4, 1)); m_DoseUnit.m_Curve.reset(new FLUCurveMould(0, 0, 3, 1)); //Actual exposure parameters ֵ m_DoseUnit.m_PostKV.reset(new POSTKVMould(0.0, 40.0, 120.0, 1.0)); m_DoseUnit.m_PostMA.reset(new POSTMAMould(0.0, 1.0, 1000.0, 0.1)); m_DoseUnit.m_PostMS.reset(new POSTMSMould(0.0, 1.0, 10000.0, 0.01)); m_DoseUnit.m_PostMAS.reset(new POSTMASMould(0.0, 0.5, 1000.0, 0.01)); //�������澯��������Ϣ m_MSGUnit.reset(new nsDetail::MSGUnit(center, nsGEN::GeneratorUnitType)); m_hGenPostEvent = LinuxEvent::CreateEvent(LinuxEvent::MANUAL_RESET, false); //������Ӧ�������ձ� ���������ش������ݴ�����Ӧ�IJ��� OnCallBack(); //�����������Զ����ṩ��ָ��ע�Ἧ���в��� Register(); LoadConfig(configfile); //����Ӳ��״̬��ѯ���� StartHardwareStatusThread(); } nsGEN::PSGHRDevice::~PSGHRDevice() { m_bExtraFlag = false; if (m_pHardwareStatusThread.joinable()) { m_pHardwareStatusThread.join(); } FINFO("\n===============log end ===================\n"); arFrame.clear(); } std::string nsGEN::PSGHRDevice::GetGUID() const { FINFO("===============GetGUID : {$} ===================\n", GeneratorUnitType); return GeneratorUnitType; } void nsGEN::PSGHRDevice::Register() { auto Disp = m_Dispatch.Lock().As(); superGen::Register(Disp); superGen::RegisterRAD(Disp); superGen::RegisterAEC(Disp); superGen::RegisterExpEnable(Disp); superGen::RegisterGeneratortoSyncStatus(Disp); superGen::RegisterFluoro(Disp); Disp->Get.Push(m_MSGUnit->GetKey().c_str(), [this](std::string& out) { out = m_MSGUnit->JSGet(); return RET_STATUS::RET_SUCCEED; }); Disp->Get.Push(AttrKey::DENHEAT, [this](std::string& out) { out = m_DoseUnit.m_GenHE->JSGet(); return RET_STATUS::RET_SUCCEED; }); auto fun_Clear_DAP = [this](auto in, auto& out) { return Clear_DAP(); }; Disp->Action.Push("Clear_DAP", fun_Clear_DAP); auto fun_GetValue_DAP = [this](auto in, auto& out) { float value = 0; RET_STATUS ret = GetValue_DAP(value); out = ToJSON(value); return ret; }; Disp->Action.Push("GetValue_DAP", fun_GetValue_DAP); } RET_STATUS nsGEN::PSGHRDevice::IncKV() { FINFO("Enter PSGHRDevice::IncKV()\n"); if (!m_DoseUnit.m_KV->CanInc()) return RET_STATUS::RET_SUCCEED; return HWSend("KV+", 3); } RET_STATUS nsGEN::PSGHRDevice::DecKV() { if (!m_DoseUnit.m_KV->CanDec()) return RET_STATUS::RET_SUCCEED; return HWSend("KV-", 3); } RET_STATUS nsGEN::PSGHRDevice::SetKV(float value) { if (!m_DoseUnit.m_KV->Verify(value)) return RET_STATUS::RET_SUCCEED; char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "KV%03d", (int)value); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::IncMA() { if (!m_DoseUnit.m_MA->CanInc()) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_V2TYPE::ET_MAS) { FINFO("\n Techmode is MAS, can't inc MA"); return RET_STATUS::RET_FAILED; } return HWSend("MA+",3); } RET_STATUS nsGEN::PSGHRDevice::DecMA() { if (!m_DoseUnit.m_MA->CanDec()) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_V2TYPE::ET_MAS) { FINFO("\n Techmode is MAS, can't dec MA"); return RET_STATUS::RET_FAILED; } return HWSend("MA-", 3); } RET_STATUS nsGEN::PSGHRDevice::SetMA(float value) { if (!m_DoseUnit.m_MA->Verify(value)) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_V2TYPE::ET_MAS) { FINFO("\n Techmode is MAS, can't set MA"); return RET_STATUS::RET_FAILED; } char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "MA%05d", (int)(value * 10)); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::IncMS() { FINFO("nsGEN::PSGHRDevice::IncMS()\n"); if (!m_DoseUnit.m_MS->CanInc()) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_NOAEC_2P || m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_AEC_2P) { FINFO("Techmode is 2Point, Cannot inc MS \n"); return RET_STATUS::RET_FAILED; } return HWSend("MS+",3); } RET_STATUS nsGEN::PSGHRDevice::DecMS() { if (!m_DoseUnit.m_MS->CanDec()) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_NOAEC_2P || m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_AEC_2P) { FINFO("Techmode is 2Point, Cannot dec MS \n"); return RET_STATUS::RET_FAILED; } return HWSend("MS-", 3);; } RET_STATUS nsGEN::PSGHRDevice::SetMS(float value) { if (!m_DoseUnit.m_MS->Verify(value)) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_NOAEC_2P || m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_AEC_2P) { FINFO("Techmode is 2Point, Cannot set MS \n"); return RET_STATUS::RET_FAILED; } char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "MS%07d", (int)(value * 100)); return HWSend(temp,strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::IncMAS() { FINFO("nsGEN::PSGHRDevice::IncMAS()\n"); if (!m_DoseUnit.m_MAS->CanInc()) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_NOAEC_3P || m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_AEC_3P) { FINFO("Techmode is 3Point, Cannot inc MAS \n"); return RET_STATUS::RET_FAILED; } return HWSend("MX+" , 3); } RET_STATUS nsGEN::PSGHRDevice::DecMAS() { if (!m_DoseUnit.m_MAS->CanDec()) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_NOAEC_3P || m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_AEC_3P) { FINFO("Techmode is 3Point, Cannot dec MAS \n"); return RET_STATUS::RET_FAILED; } return HWSend("MX-", 3); } RET_STATUS nsGEN::PSGHRDevice::SetMAS(float value) { if (!m_DoseUnit.m_MAS->Verify(value)) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_NOAEC_3P || m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_TYPE::TECHMODE_AEC_3P) { FINFO("Techmode is 3Point, Cannot set MAS \n"); return RET_STATUS::RET_FAILED; } char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "MX%06d", (int)(value * 100)); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetTechmode(int value) { if (!m_DoseUnit.m_Techmode->Verify(value)) return RET_STATUS::RET_SUCCEED; char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "ET%1d", (int)value); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetEXAMMode(std::string value) { //�ϲ��������exam mode��manual semiauto automatic����Ӧ��NoAEC2Point AEC2Point AEC2Point�� FINFO("Enter setexammode func value = {$}\n", value); if (value == AttrKey::EXAMMODE_TYPE::MANUAL) { SetTechmode(AttrKey::TECHMODE_TYPE::TECHMODE_NOAEC_2P); } else if (value == AttrKey::EXAMMODE_TYPE::SEMIAUTO) { SetTechmode(AttrKey::TECHMODE_TYPE::TECHMODE_AEC_2P); } else if (value == AttrKey::EXAMMODE_TYPE::AUTOMATIC) { SetTechmode(AttrKey::TECHMODE_TYPE::TECHMODE_AEC_2P); } return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetAPR(const _tAPRArgs& t) { m_bGenBusy = true; FINFO("APR:KV={$},MA={$},MS={$},MAS={$},Focus={$},Techmode={$},WS={$},AECDensity={$},AECField={$},AECFilm={$}", t.fKV, t.fMA, t.fMS, t.fMAS, t.nFocus, t.nTechmode, t.nWS, t.nAECDensity, t.nAECField, t.nAECFilm); if (t.nFocus < 0) { FINFO("SetAPR: the focus value is amall than 0, set focus to small focus\n"); SetFocus(0); } int nTempAECFilm = 1; switch (t.nAECFilm) { case 0: nTempAECFilm = 1; break; case 1: nTempAECFilm = 10; break; case 2: nTempAECFilm = 100; break; default: break; } SetKV(t.fKV); SetFocus(t.nFocus); if (t.nTechmode == AttrKey::TECHMODE_V2TYPE::ET_AEC) { // aec SetTechmode(t.nTechmode); Sleep(50); SetAECField(t.nAECField); Sleep(80); SetAECDensity(t.nAECDensity); Sleep(50); SetAECFilm(nTempAECFilm); Sleep(50); SetMA(t.fMA); Sleep(50); SetMS(t.fMS); } else if (t.nTechmode == AttrKey::TECHMODE_V2TYPE::ET_MAS) { // mas SetTechmode(t.nTechmode); Sleep(50); const float EPSINON = 0.000001; if ((t.fMAS >= -EPSINON) && (t.fMAS <= EPSINON)) { SetMAS(t.fMA * t.fMS / 1000); } else { SetMAS(t.fMAS); } } else if (t.nTechmode == AttrKey::TECHMODE_V2TYPE::ET_TIME) { // time SetTechmode(t.nTechmode); Sleep(50); SetMA(t.fMA); Sleep(80); SetMS(t.fMS); } m_bGenBusy = false; HWSend("RR", 2); ///////////////////////end return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::RefreshData() { if (!m_bGenBusy) { HWSend("RR", 2); Sleep(50); HWSend("RS", 2); } return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetFocus(int value) { if (!m_DoseUnit.m_Focus->Verify(value)) return RET_STATUS::RET_SUCCEED; char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "FO%01d", (int)value); return HWSend(temp,strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::Reset() { FDEBUG("clear all errors \n"); int level = 0; m_MSGUnit->DelErrorMessage("0", level, "clear all errors"); m_MSGUnit->DelWarnMessage("0", level, "clear all Warning"); HWSend("RE",2);//�����ô���״̬ return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::ActiveSyncMode(_tSyncModeArgs value) { FINFO("value.strSyncMode: {$}, value.strSyncValue: {$}, value.strWS: {$} \n", value.strSyncMode, value.strSyncValue, value.strWS); int nSyncModeValue = atoi(value.strSyncValue.c_str()); char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "WS%01d", nSyncModeValue); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::QueryHE(int& value) { if (!m_bGenBusy) return HWSend("HE?", 3); return RET_STATUS::RET_SUCCEED; } void nsGEN::PSGHRDevice::SubscribeSelf(ccos_mqtt_connection* conn) { //����GEN����Action //SubscribeTopic(conn, "CCOS/DEVICE/Generator/Action/#"); Moduld��Ĭ�϶��������Action��������Ҳ���ĵĻ��ͻ�ִ������Action�����ܻ������ } RET_STATUS nsGEN::PSGHRDevice::SetVibrationGrid(int value) { FINFO("Enter StartVibrationGrid:[{$}]", value); return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::GetVibrationGridMS(int& value) { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetAECDensity(int value) { if (!m_DoseUnit.m_AECDensity->Verify(value)) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_V2TYPE::ET_AEC) return RET_STATUS::RET_FAILED; int nAECDensity = m_DoseUnit.m_AECDensity->Get(); if (value < m_DoseUnit.m_AECDensity->Get()) { if (value < m_DoseUnit.m_AECDensity->Get() - 1) { nAECDensity = (int)value; } else { nAECDensity = nAECDensity - 1; } } else if (value > m_DoseUnit.m_AECDensity->Get()) { if (value > m_DoseUnit.m_AECDensity->Get() + 1) { nAECDensity = (int)value; } else { nAECDensity = nAECDensity + 1; } } m_DoseUnit.m_AECDensity->Update(value); char temp[50] = { 0 }; if (nAECDensity >= 0) { snprintf(temp, sizeof(temp), "FN+%01d", (int)nAECDensity); } else { snprintf(temp, sizeof(temp), "FN-%01d", (int)nAECDensity); } return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetAECField(int value) { if (!m_DoseUnit.m_AECField->Verify(value)) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_V2TYPE::ET_MAS) return RET_STATUS::RET_FAILED; m_DoseUnit.m_AECField->Update(value); char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "FI%03d", (int)value); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetAECFilm(int value) { if (!m_DoseUnit.m_AECFilm->Verify(value)) return RET_STATUS::RET_SUCCEED; if (m_DoseUnit.m_Techmode->Get() == AttrKey::TECHMODE_V2TYPE::ET_MAS) return RET_STATUS::RET_FAILED; m_DoseUnit.m_AECFilm->Update(value); char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "FS%03d", (int)value); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetWS(const string value) { FINFO("Enter SetWS {$}", value); int tempws = 0; if (value == "Table") tempws = (int)m_GenConfig["WSTable"]; else if (value == "Wall") tempws = (int)m_GenConfig["WSWall"]; else if (value == "Direct") tempws = (int)m_GenConfig["WSConventional"]; else if (value == "Free") tempws = (int)m_GenConfig["WSFree"]; else if (value == "Tomo") tempws = (int)m_GenConfig["WSTomo"]; m_DoseUnit.m_WS->Update(tempws); char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "WS%01d", tempws); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::QueryPostKV(float& value) { m_DoseUnit.m_PostKV->Update(m_DoseUnit.m_KV->Get()); value = m_DoseUnit.m_PostKV->Get(); return HWSend("VP?",3); } RET_STATUS nsGEN::PSGHRDevice::QueryPostMA(float& value) { return HWSend("PA?", 3); } RET_STATUS nsGEN::PSGHRDevice::QueryPostMS(float& value) { return HWSend("AT?",3); } RET_STATUS nsGEN::PSGHRDevice::QueryPostMAS(float& value) { return HWSend("AP?", 3); } RET_STATUS nsGEN::PSGHRDevice::Clear_DAP() { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::GetValue_DAP(float& value) { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::StartMove() //�������޴����� { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::EndMove() //�������޴����� { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetGenSynState(int value) { FINFO("Enter SetGenSynState...{$} \n", value); //if (AttrKey::GENERATOR_RAD_XRAYON == value) //{ // FINFO("SetGenSynState be call.this is soft syn mode."); // HWSend("XR2",3); // m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_RAD_XRAYON); // FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); //} //else if(AttrKey::GENERATOR_FLU_XRAYON == value) //{ // FINFO("SetGenSynState be call.this is soft syn mode."); // //HWSend("FLX2", 4); // //m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_FLU_XRAYON); // //FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); //} return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetGenState(int value) { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetExpMode(std::string value) { FINFO("Enter SetExpMode...{$} \n",value.c_str()); m_DoseUnit.m_ExpMode->Update(value); //add for dcm iRF hard FINFO("SetExpMode:add for dcm iRF hard"); FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); FireNotify(m_DoseUnit.m_TubeTargetMaterial->GetKey(), m_DoseUnit.m_TubeTargetMaterial->JSGet()); FireNotify(m_DoseUnit.m_TubeAngle->GetKey(), m_DoseUnit.m_TubeAngle->JSGet()); return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetFLFMode(std::string value) { FINFO("Enter SetFLFMode...{$} \n", value.c_str()); if (value == "CF") { m_DoseUnit.m_FLMode->Update(1); HWSend("FLF1", 4); SetPPS(15); SetPluseWidth(15); } else if (value == "PF") { m_DoseUnit.m_FLMode->Update(2); HWSend("FLF2", 4); SetPPS(5); SetPluseWidth(5); } else { FINFO("other FluMode : {$}", value.c_str()); return RET_STATUS::RET_SUCCEED; } return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetFLLever(float value) { FINFO("Enter SetFLLever...{$} \n", value); m_DoseUnit.m_DoseLevel->Update(value); char temp[50]{ 0 }; snprintf(temp, sizeof(temp), "FLD%f", value); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetFrameRate(float frameRate) { FINFO("SetFrameRate in\n"); /*m_DoseUnit.m_FrameRate->Update(frameRate); char temp[50]{ 0 }; snprintf(temp, sizeof(temp), "FLS%03d", int(frameRate * 10)); return HWSend(temp, strlen(temp));*/ return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetRPS(int rps) //�������޴˶�̬���� { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetAPF(const _tAPFArgs& t) { m_bGenBusy = true; FINFO("APF:FLKV={$},FLMA={$},PPS={$},WS={$},FLuType={$},ABSMode={$},DoseLever={$}", t.nFLKV, t.fFLMA, t.nPPS, t.nWS, t.nFluMode, t.nABSMode, t.nDoseLever); SetABSMode(t.nABSMode); Sleep(50); SetFLFMode(to_string(t.nFluMode)); Sleep(50); SetFluDoseLever(t.nDoseLever); Sleep(50); SetFluKV(t.nFLKV); Sleep(50); SetFluMA(t.fFLMA); m_bGenBusy = false; return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::IncFluKV() { FINFO("nsGEN::PSGHRDevice::IncFLKV()\n"); if (!m_DoseUnit.m_FLKV->CanInc()) return RET_STATUS::RET_SUCCEED; return HWSend("FLK+", 4); } RET_STATUS nsGEN::PSGHRDevice::DecFluKV() { if (!m_DoseUnit.m_FLKV->CanDec()) return RET_STATUS::RET_SUCCEED; return HWSend("FLK-", 4); } RET_STATUS nsGEN::PSGHRDevice::SetFluKV(float value) { if (!m_DoseUnit.m_FLKV->Verify(value)) return RET_STATUS::RET_SUCCEED; char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "FLK%03d", (int)value); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::IncFluMA() { if (!m_DoseUnit.m_FLMA->CanInc()) return RET_STATUS::RET_SUCCEED; return HWSend("FLM+", 4); } RET_STATUS nsGEN::PSGHRDevice::DecFluMA() { if (!m_DoseUnit.m_FLMA->CanDec()) return RET_STATUS::RET_SUCCEED; return HWSend("FLM-", 4); } RET_STATUS nsGEN::PSGHRDevice::SetFluMA(float value) { if (!m_DoseUnit.m_FLMA->Verify(value)) return RET_STATUS::RET_SUCCEED; char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "FLM%03d", (int)(value * 10)); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::INCPPS() { if (!m_DoseUnit.m_PPS->CanInc()) return RET_STATUS::RET_SUCCEED; return HWSend("FLS+", 4); } RET_STATUS nsGEN::PSGHRDevice::DECPPS() { if (!m_DoseUnit.m_PPS->CanDec()) return RET_STATUS::RET_SUCCEED; return HWSend("FLS-", 4); } RET_STATUS nsGEN::PSGHRDevice::SetPPS(float value) { if (!m_DoseUnit.m_PPS->Verify(value)) return RET_STATUS::RET_SUCCEED; char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "FLS%03d", (int)(value * 10)); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetABSMode(int nMode) { if (!m_DoseUnit.m_ABSStatus->Verify(nMode)) return RET_STATUS::RET_SUCCEED; char temp[50] = { 0 }; FINFO("SetABSMode[{$}] \n", nMode); snprintf(temp, sizeof(temp), "FLA%d", (int)nMode); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetABSCurve(int curveNum) { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::IncABSCurve() { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::DecABSCurve() { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::GetABSCurve() { return HWSend("FLA?", 4); } float nsGEN::PSGHRDevice::GetFluIntTimer() { return HWSend("FLI?", 4); } float nsGEN::PSGHRDevice::GetFluAccTimer() { return HWSend("FLT?", 4); } RET_STATUS nsGEN::PSGHRDevice::ResetFluTimer(int value) { char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "FLR%d", (int)value); FINFO("ReSetFluAccTimer[{$}] \n", value); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetFluPre(int value) { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetFluEXP(int value) { return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetFluMode(std::string value) { FINFO("Enter SetFLFMode...{$} \n", value.c_str()); if (value == "CF") { m_DoseUnit.m_FLMode->Update(1); return HWSend("FLF1", 4); } else if (value == "PF") { m_DoseUnit.m_FLMode->Update(2); return HWSend("FLF2", 4); } else { FINFO("other FluMode : {$}",value.c_str()); return RET_STATUS::RET_SUCCEED; } } RET_STATUS nsGEN::PSGHRDevice::SetFluDoseLever(int value) { FINFO("Enter SetFluDoseLever...{$} \n", value); m_DoseUnit.m_DoseLevel->Update(value); char temp[50]{ 0 }; snprintf(temp, sizeof(temp), "FLD%d", value); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetPluseWidth(float fplusewidth) { if (!m_DoseUnit.m_PPS->Verify(fplusewidth)) return RET_STATUS::RET_SUCCEED; char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "FLW%05d", (int)(fplusewidth * 100)); return HWSend(temp, strlen(temp)); } RET_STATUS nsGEN::PSGHRDevice::SetExpEnable() { if (1 == m_bUseCECmd) { HWSend("CE1", 3); } HWSend("ST?", 3); FINFO("SetExpEnable in\n"); m_bExpEnable = true; FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::SetExpDisable() { if (1 == m_bUseCECmd) { HWSend("CE0", 3); } FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); FINFO("SetExpDisable in\n"); m_bExpEnable = false; return RET_STATUS::RET_SUCCEED; } RET_STATUS nsGEN::PSGHRDevice::PrepareAcquisition() { FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); return RET_STATUS::RET_SUCCEED; } void nsGEN::PSGHRDevice::SetSmartAEC(int value) { } //----------------------------------------------------------------------------- // ProcessCmd //----------------------------------------------------------------------------- void nsGEN::PSGHRDevice::ProcessClientData(const char* pData, unsigned long nDataLength, void* lparam) { PSGHRDevice* pCurGen = (PSGHRDevice*)lparam; pCurGen->HWSend(pData, nDataLength); } RET_STATUS nsGEN::PSGHRDevice::HWSend(const char* strCommand,int lengh, bool reSend, int nTimeOut) { if (!m_bConnectFlag) { FERROR("==OUT==: not Connect,[{$}] send failed \n", strCommand); return RET_STATUS::RET_FAILED; } if (!m_SCF) return RET_STATUS::RET_FAILED; char strSendCommand[100] = { 0 }; int len = strlen(strCommand); int tmpSum = 0; for (int i = 0; i < len; i++) { tmpSum += (int)strCommand[i]; } char checkSum = char(tmpSum + 3); memcpy(strSendCommand, strCommand, len); strSendCommand[len + 0] = 0x03; strSendCommand[len + 1] = checkSum; FINFO("==OUT==: [{$}] \n", strSendCommand); unsigned int retLength; if (m_SCF->Lock(1000) == WAIT_OBJECT_0) { int result = m_SCF->SendPacket(strSendCommand, strlen(strSendCommand), nTimeOut, retLength); m_SCF->Unlock(); if (result != SCF_SUCCEED) { return RET_STATUS::RET_FAILED; } } else { return RET_STATUS::RET_FAILED; } return RET_STATUS::RET_SUCCEED; } void nsGEN::PSGHRDevice::FireNotify(string key, int context) { char szInfo[64] = { 0 }; snprintf(szInfo, sizeof(szInfo), "%d", context); // Linux ��׼���� std::string str = szInfo; EventCenter->OnNotify(1, key, str); } void nsGEN::PSGHRDevice::FireNotify(std::string key, float context) { char szInfo[16] = { 0 }; snprintf(szInfo, sizeof(szInfo), "%.2f", context); // Linux ��׼���� std::string str = szInfo; EventCenter->OnNotify(1, key, str); } void nsGEN::PSGHRDevice::FireNotify(std::string key, std::string context) { EventCenter->OnNotify(1, key, context); } void nsGEN::PSGHRDevice::FireErrorMessage(const bool Act, const int Code, const char* ResInfo) { string ErrorCode("PSGHR_ERR_"); ErrorCode += std::to_string(Code); int level = PSG_HR_REGULATION_LEVEL::REG_ERRO; if (Act) { FERROR("add {$}:{$}", ErrorCode.c_str(), ResInfo); m_MSGUnit->AddErrorMessage(ErrorCode.c_str(), level, ResInfo); } else { FERROR("del {$}:{$}", ErrorCode.c_str(), ResInfo); m_MSGUnit->DelErrorMessage(ErrorCode.c_str(), level, ResInfo); } } void nsGEN::PSGHRDevice::FireWarnMessage(const bool Act, const int Code, const char* ResInfo) { string ErrorCode("PSGHR_WAR_"); ErrorCode += std::to_string(Code); int level = PSG_HR_REGULATION_LEVEL::REG_WARN; if (Act) { FERROR("add {$}:{$}", ErrorCode.c_str(), ResInfo); m_MSGUnit->AddWarnMessage(ErrorCode.c_str(), level, ResInfo); } else { FERROR("del {$}:{$}", ErrorCode.c_str(), ResInfo); m_MSGUnit->DelWarnMessage(ErrorCode.c_str(), level, ResInfo); } } void nsGEN::PSGHRDevice::OnCallBack() { auto HWNotProcess = [](const char* value, int length) -> void { FINFO("This commands[{$}] didn't need to process", value); }; auto extractValue = [](const char* src, int start, int len, bool isInt = false) -> double { char buf[7] = { 0 }; memcpy(buf + (7 - len), src + start, len); return isInt ? atoi(buf) : atof(buf); }; auto HWKV = [this, extractValue](const char* value, int length) { assert(value); if (length > 20) { FINFO("value:{$}", value); int tmpkv = static_cast(extractValue(value, 0, 3, true)); float tmpma = static_cast(extractValue(value, 6, 5)) / 10.0f; float tmpms = static_cast(extractValue(value, 14, 7)) / 100.0f; float tmpmx = static_cast(extractValue(value, 24, 6)) / 100.0f; m_DoseUnit.m_KV->Update(tmpkv); FireNotify(AttrKey::KV, m_DoseUnit.m_KV->JSGet()); m_DoseUnit.m_MA->Update(tmpma); FireNotify(AttrKey::MA, m_DoseUnit.m_MA->JSGet()); m_DoseUnit.m_MS->Update(tmpms); FireNotify(AttrKey::MS, m_DoseUnit.m_MS->JSGet()); m_DoseUnit.m_MAS->Update(tmpmx); FireNotify(AttrKey::MAS, m_DoseUnit.m_MAS->JSGet()); FINFO("tmpkv={$}, tmpma={$}, tmpms={$}, tmpmx={$};", tmpkv, tmpma, tmpms, tmpmx); } else { if (m_DoseUnit.m_KV->Update(atof(value))) { FireNotify(AttrKey::KV, m_DoseUnit.m_KV->JSGet()); } } }; auto HWMAS = [this](const char* value, int length) { assert(value); float fmas = atof(value) / 100.0; m_DoseUnit.m_MAS->Update(fmas); FireNotify(AttrKey::MAS, m_DoseUnit.m_MAS->JSGet()); }; auto HWMA = [this](const char* value, int length) { assert(value); float fma = atof(value) / 10.0; m_DoseUnit.m_MA->Update(fma); FireNotify(AttrKey::MA, m_DoseUnit.m_MA->JSGet()); }; auto HWMS = [this](const char* value, int length) { assert(value); float fms = atof(value) / 100.0; m_DoseUnit.m_MS->Update(fms); FireNotify(AttrKey::MS, m_DoseUnit.m_MS->JSGet()); }; auto HWVP = [this](const char* value, int length) { assert(value); m_DoseUnit.m_PostKV->Update(atof(value)); FireNotify(AttrKey::POSTKV, m_DoseUnit.m_PostKV->JSGet()); FINFO("Actual exposure parameters KV:{$}", m_DoseUnit.m_PostKV->JSGet().c_str()); }; auto HWPA = [this](const char* value, int length) { assert(value); float fma = atof(value) / 10.0; m_DoseUnit.m_PostMA->Update(fma); FireNotify(AttrKey::POSTMA, m_DoseUnit.m_PostMA->JSGet()); FINFO("Actual exposure parameters MA:{$}", m_DoseUnit.m_PostMA->JSGet().c_str()); }; auto HWAP = [this](const char* value, int length) { assert(value); float fmas = atof(value) / 100.0; m_DoseUnit.m_PostMAS->Update(fmas); FireNotify(AttrKey::POSTMAS, m_DoseUnit.m_PostMAS->JSGet()); FINFO("Actual exposure parameters MAS:{$}", m_DoseUnit.m_PostMAS->JSGet().c_str()); }; auto HWFocus = [this](const char* value, int length) { assert(value); int nfous = atoi(value); if (m_DoseUnit.m_Focus->Update(nfous)) FireNotify(AttrKey::FOCUS, m_DoseUnit.m_Focus->JSGet()); FINFO("Current focus:{$}, FO={$}", atoi(m_DoseUnit.m_Focus->JSGet().c_str()) ? "large focus" : "small focus", m_DoseUnit.m_Focus->JSGet().c_str()); }; auto HWTechmode = [this](const char* value, int length) { assert(value); int ntechmode = atoi(value); m_DoseUnit.m_Techmode->Update(ntechmode); FireNotify(AttrKey::TECHMODE, m_DoseUnit.m_Techmode->JSGet()); switch (ntechmode) { case 0: FINFO("ET={$}", "mA/ms",m_DoseUnit.m_Techmode->JSGet().c_str()); break; case 1: FINFO("ET={$}", "mAs", m_DoseUnit.m_Techmode->JSGet().c_str()); break; case 2: FINFO("ET={$}", "AEC / mA", m_DoseUnit.m_Techmode->JSGet().c_str()); break; case 3: FINFO("ET={$}", "mAs / ms", m_DoseUnit.m_Techmode->JSGet().c_str()); break; case 4: FINFO("ET={$}", "AEC", m_DoseUnit.m_Techmode->JSGet().c_str()); break; } }; auto HWAECField = [this](const char* value, int length) { assert(value); int nvalue = atoi(value); if (m_DoseUnit.m_AECField->Update(nvalue)) FireNotify(AttrKey::AECFIELD, m_DoseUnit.m_AECField->JSGet()); }; auto HWAECFilm = [this](const char* value, int length) { assert(value); if (m_DoseUnit.m_AECFilm->Update(atoi(value))) FireNotify(AttrKey::AECFILM, m_DoseUnit.m_AECFilm->JSGet()); }; auto HWAECDensity = [this](const char* value, int length) { assert(value); if (m_DoseUnit.m_AECDensity->Update(atoi(value))) FireNotify(AttrKey::AECDENSITY, m_DoseUnit.m_AECDensity->JSGet()); }; auto HWWS = [this](const char* value, int length) { assert(value); int nValue = atoi(value); m_DoseUnit.m_WS->Update(nValue); { FireNotify(m_DoseUnit.m_WS->GetKey(), m_DoseUnit.m_WS->JSGet()); } }; auto HWPR = [this](const char* value, int length) { assert(value); int nValue = atoi(value); if (nValue == 2) { } else if (nValue == 1) { m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_RAD_PREPARE); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); } else if (nValue == 0) { m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_RAD_OFF); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); m_bGenBusy = false; RefreshData(); } }; auto HWXR = [this](const char* value, int length) { assert(value); int nValue = atoi(value); if (nValue == 2) { m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_RAD_XRAYON); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); } else if (nValue == 1) { m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_RAD_READY); m_hGenPostEvent->ResetEvent(); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); } else if (nValue == 0) { m_bGenBusy = false; m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_RAD_XRAYOFF); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); } }; auto HWAPDOSE = [this](const char* value, int length)//post mas { assert(value); m_DoseUnit.m_PostMAS->Update(atof(value) / 100.0); FireNotify(m_DoseUnit.m_PostMAS->GetKey(), m_DoseUnit.m_PostMAS->JSGet()); FINFO("Actual exposure parameters MAS:{$}", m_DoseUnit.m_PostMAS->JSGet().c_str()); }; auto HWATDOSE = [this](const char* value, int length) { assert(value); m_DoseUnit.m_PostMS->Update(atof(value) / 100.0); FireNotify(m_DoseUnit.m_PostMS->GetKey(), m_DoseUnit.m_PostMS->JSGet()); FINFO("Actual exposure parameters MS:{$}", m_DoseUnit.m_PostMS->JSGet().c_str()); }; auto HWDAP = [this](const char* value, int length) { assert(value); FINFO("Recv DAP ={$}", atof(value) / 100.0); }; auto HWEHE = [this](const char* value, int length) { m_iHeartBeats = 0; assert(value); int nhe = atoi(value); if (m_DoseUnit.m_HE->Update(nhe)) FireNotify(m_DoseUnit.m_HE->GetKey(), m_DoseUnit.m_HE->JSGet()); }; auto HWHH = [this](const char* value, int length) { m_iHeartBeats = 0; assert(value); int nhe = atoi(value); if (m_DoseUnit.m_GenHE->Update(nhe)) FireNotify(m_DoseUnit.m_GenHE->GetKey(), m_DoseUnit.m_GenHE->JSGet()); }; auto HWFLK = [this](const char* value, int length) { assert(value); if (length > 20) { // ��������ʽ�ַ���: "040 FLM00010 FLI000 FLT000 FLF1 FLA0 FLS060 FLD0 FLO0 FLC1 FLW00400" FINFO("value:{$}", value); int tmpflk, tmpflf, tmpfla, tmpfld, tmpflo; float tmpflm, tmpfli, tmpflt, tmpfls, tmpflw; // ����ʽֱ����ȡ�����ֶΣ�%n��ȡ�Ѷ��ֽ���������У���ʽ�� int bytesRead; const char* fmt = "%3d FLM%5f FLI%3f FLT%3f FLF%d FLA%d FLS%3f FLD%d FLO%d FLC%d FLW%5f%n"; int ret = sscanf(value, fmt, &tmpflk, &tmpflm, &tmpfli, &tmpflt, &tmpflf, &tmpfla, &tmpfls, &tmpfld, &tmpflo, /*FLCδʹ��*/nullptr, & tmpflw, & bytesRead); // У������Ƿ�ɹ�����ƥ��11���ֶ��Ҷ��������ַ����� if (ret == 11 && bytesRead == length) { // ͳһ������ֵת����ԭ�߼��еij����� tmpflm /= 10.0f; tmpfli /= 10.0f; tmpflt /= 10.0f; tmpfls /= 10.0f; tmpflw /= 100.0f; // ���²�֪ͨ������������ if (m_DoseUnit.m_FLKV->Update(tmpflk)) FireNotify(AttrKey::FLUKV, m_DoseUnit.m_FLKV->JSGet()); if (m_DoseUnit.m_FLMA->Update(tmpflm)) FireNotify(AttrKey::FLUMA, m_DoseUnit.m_FLMA->JSGet()); if (m_DoseUnit.m_FLIntTime->Update(tmpfli)) FireNotify(AttrKey::FLUIntTime, m_DoseUnit.m_FLIntTime->JSGet()); if (m_DoseUnit.m_FLAccTime->Update(tmpflt)) FireNotify(AttrKey::FLUAccTime, m_DoseUnit.m_FLAccTime->JSGet()); if (m_DoseUnit.m_FLMode->Update(tmpflf)) FireNotify(AttrKey::FLUMode, m_DoseUnit.m_FLMode->JSGet()); if (m_DoseUnit.m_ABSStatus->Update(tmpfla)) FireNotify(AttrKey::FLUABSStatus, m_DoseUnit.m_ABSStatus->JSGet()); if (m_DoseUnit.m_PPS->Update(tmpfls)) FireNotify(AttrKey::FLUPPS, m_DoseUnit.m_PPS->JSGet()); if (m_DoseUnit.m_DoseLevel->Update(tmpfld)) FireNotify(AttrKey::FLUDoseLevel, m_DoseUnit.m_DoseLevel->JSGet()); if (m_DoseUnit.m_Curve->Update(tmpflo)) FireNotify(AttrKey::FLUCurve, m_DoseUnit.m_Curve->JSGet()); if (m_DoseUnit.m_FLMS->Update(tmpflw)) FireNotify(AttrKey::FLUMS, m_DoseUnit.m_FLMS->JSGet()); FINFO("tmpflk={$}, tmpflf={$}, tmpfla={$}, tmpfld={$}, tmpflo={$}, tmpflm={$}, tmpfli={$}, tmpflt={$}, tmpfls={$}, tmpflw={$};", tmpflk, tmpflf, tmpfla, tmpfld, tmpflo, tmpflm, tmpfli, tmpflt, tmpfls, tmpflw); } else { FINFO("FLK format parse failed"); } } else { // �̸�ʽ���� int tmpflkv = atoi(value); m_DoseUnit.m_FLKV->Update(tmpflkv); FireNotify(AttrKey::FLUKV, m_DoseUnit.m_FLKV->JSGet()); } }; auto HWFLM = [this](const char* value, int length) { assert(value); float tmpflm = atof(value) / 10.0; m_DoseUnit.m_FLMA->Update(tmpflm); FireNotify(AttrKey::FLUMA, m_DoseUnit.m_FLMA->JSGet()); }; auto HWFLW = [this](const char* value, int length) { assert(value); float tmpflms = atof(value) / 100.0; m_DoseUnit.m_FLMS->Update(tmpflms); FireNotify(AttrKey::FLUMS, m_DoseUnit.m_FLMS->JSGet()); }; auto HWFLI = [this](const char* value, int length) { assert(value); float tmpfli = atof(value) / 10.0; if (m_DoseUnit.m_FLIntTime->Update(tmpfli)) FireNotify(AttrKey::FLUIntTime, m_DoseUnit.m_FLIntTime->JSGet()); }; auto HWFLT = [this](const char* value, int length) { assert(value); float tmpflt = atof(value) / 10.0; if (m_DoseUnit.m_FLAccTime->Update(tmpflt)) FireNotify(AttrKey::FLUAccTime, m_DoseUnit.m_FLAccTime->JSGet()); }; auto HWFLS = [this](const char* value, int length) { assert(value); float tmppps = atof(value) / 10.0; if (m_DoseUnit.m_PPS->Update(tmppps)) FireNotify(AttrKey::FLUPPS, m_DoseUnit.m_PPS->JSGet()); }; auto HWFLF = [this](const char* value, int length) { assert(value); FINFO("m_FLMode={$};", value); int tmpflf = atoi(value); if (m_DoseUnit.m_FLMode->Update(tmpflf)) FireNotify(AttrKey::FLUMode, m_DoseUnit.m_FLMode->JSGet()); }; auto HWFLX = [this](const char* value, int length) { assert(value); int nValue = atoi(value); if (nValue == 2) { m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_FLU_XRAYON); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); } else if (nValue == 1) { FINFO("Recv FLX1, do nothing"); } else if (nValue == 0) { m_bGenBusy = false; m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_FLU_XRAYOFF); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); } }; auto HWFLP = [this](const char* value, int length) { assert(value); int nValue = atoi(value); if (nValue == 2) { m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_FLU_READY); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); } else if (nValue == 1) { FINFO("Recv FLP1, do nothing\n"); } else if (nValue == 0) { int nFlFMode = atoi(m_DoseUnit.m_FLMode->JSGet().c_str()); FINFO("m_DoseUnit.m_FLMode={$}- number ={$};", m_DoseUnit.m_FLMode->JSGet().c_str(), nFlFMode); if (nFlFMode == 2) { m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_FLU_XRAYOFF); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); } m_DoseUnit.m_GenSynState->Update(AttrKey::GENERATOR_FLU_OFF); FINFO("m_DoseUnit.m_GenSynState={$};", m_DoseUnit.m_GenSynState->JSGet().c_str()); FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet()); m_bGenBusy = false; RefreshData(); } }; auto HWDS = [this](const char* value, int length) { assert(value); }; auto HWFLA = [this](const char* value, int length) { assert(value); int tmpfla = atoi(value); if ( m_DoseUnit.m_ABSStatus->Update(tmpfla)) FireNotify(AttrKey::FLUABSStatus, m_DoseUnit.m_ABSStatus->JSGet()); }; auto HWFLD = [this](const char* value, int length) { assert(value); }; auto HWFLC= [this](const char* value, int length) { assert(value); }; auto HWFLO = [this](const char* value, int length) { assert(value); int nValue = atoi(value); if (m_DoseUnit.m_Curve->Update(nValue)) FireNotify(AttrKey::FLUCurve, m_DoseUnit.m_Curve->JSGet()); }; auto HWER = [this](const char* value, int length) { assert(value); int nValue = atoi(value); char tmpbuf[4] = { 0,0,0,0 }; tmpbuf[0] = value[0]; tmpbuf[1] = value[1]; tmpbuf[2] = value[2]; if (nValue != 0) { std::unordered_map errorMessages = { {"100", "AEC Back-up Timer - Exposure Terminated"}, {"101", "AEC mAs Exceeded - Exposure Terminated"}, {"102", "Door Interlock FERROR"}, {"103", "Calibration Data Corrupt FERROR"}, {"104", "AEC Data Corrupt FERROR"}, {"105", "Receptor Data Corrupt FERROR"}, {"106", "Tube Data Corrupt FERROR"}, {"107", "Generator Limit Data Corrupt FERROR"}, {"108", "mA Correction Data Corrupt FERROR"}, {"109", "Not Enabled FERROR"}, {"110", "AEC Feedback FERROR - No Feedback Signal Detected"}, {"111", "EXP_SW Signal Active in Standby State"}, {"112", "Calibration FERROR - No mA"}, {"113", "Calibration FERROR - Maximum Filament Current Exceeded"}, {"114", "MA During Exposure too High"}, {"115", "MA During Exposure too Low"}, {"116", "Generator KW Limit"}, {"117", "Generator KV Limit"}, {"118", "Generator MA Limit"}, {"119", "Generator MS Limit"}, {"120", "Generator MAS Limit"}, {"121", "Tube KW Limit"}, {"122", "Tube KV Limit"}, {"123", "Tube MA Limit"}, {"124", "Tube MAS Limit"}, {"125", "Parameter Limit"}, {"126", "Manually Terminated Exposure"}, {"127", "Preparation Time-out FERROR prep time is over 30s or 60s"}, {"128", "Prep Input Active During Initialization Phase"}, {"129", "X-ray Input Active During Initialization Phase"}, {"130", "No Fields Selected in AEC mode"}, {"131", "Generator AEC Density Limit"}, {"132", "Calibration FERROR - Manually Terminated"}, {"133", "EEPROM Communication FERROR"}, {"134", "RTC Communication FERROR"}, {"135", "AEC Channel FERROR"}, {"136", "Anode Communication FERROR"}, {"137", "EXP_OK TimeOut"}, {"138", "KV TimeOut"}, {"139", "Mosfet Temperature Limit Exceeded"}, {"140", "HU Power Limit"}, {"141", "HU Power Warning"}, {"142", "Small Focus Disable"}, {"143", "Large Focus Disable"}, {"144", "Low Speed Disable"}, {"145", "High Speed Disable"}, {"146", "Anode Heat Warning Exceeded"}, {"147", "Anode Heat Limit Exceeded"}, {"148", "KV Unbalance"}, {"149", "Thermal Switch Interlock FERROR"}, {"150", "Emergency FERROR"}, {"151", "KV Correction Data Corrupt FERROR"}, {"152", "Generator Tank Power Limit"}, {"153", "AEC Standby Signal FERROR"}, {"154", "DCBUS Calibration Data Corrupt FERROR"}, {"155", "Fluoro Timer Terminated "}, {"156", "Fluoro Timer Terminated "}, {"157", "Power Off In X - Ray State"}, {"158", "DAP Data Corrupt "}, {"159", "Auto APR TimeOut "}, {"160", "ERR_FLUORO_ABSFDBNONE"}, {"200", "FLASH LOCK"}, {"201", "FLASH REVID_INVALID"}, {"202", "FLASH ADDR_INVALID"}, {"203", "FLASH INCORRECT_PARTID"}, {"204", "FLASH API_SILICON_MISMATCH"}, {"205", "FLASH ERASE ERROR"}, {"206", "FLASH FAIL_PROGRAM"}, {"207", "FLASH FAIL_ZERO_BIT_ERROR"}, {"208", "FLASH FAIL_VERIFY"}, {"209", "FLASH BUSY"}, {"210", "FLASH_PROGRM_ADDR_ERROR"}, {"211", "UPDATA_VERSION_ERROR"}, {"212", "UPDATA SN_ERROR"}, {"213", "UPDATA_BYTE_COUNT_ERROR"}, {"214", "UPDATA_CHECKSUM_ERROR"} }; char ErrorCode[20]; snprintf(ErrorCode, sizeof(ErrorCode), "PSGHR_ER_%d", nValue); char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "ER%03d", nValue); HWSend(temp, strlen(temp)); int level = 1; auto it = errorMessages.find(tmpbuf); if (it != errorMessages.end()) { m_MSGUnit->AddWarnMessage(ErrorCode, level, it->second.c_str()); } } else { int level = 1; char ErrorCode[20]; m_MSGUnit->DelWarnMessage(ErrorCode, level, ""); } }; auto HWEL = [this](const char* value, int length) { assert(value); int nValue = atoi(value); char tmpbuf[3] = { 0,0,0 }; tmpbuf[0] = value[0]; tmpbuf[1] = value[1]; tmpbuf[2] = value[2]; if (nValue != 0) { std::unordered_map errorMessages = { {"001", "Generator CPU Real Time Clock FERROR"}, {"002", "Main Contactor FERROR"}, {"003", "Rotor Fault"}, {"004", "DC Bus Voltage too Low"}, {"005", "DC Bus Voltage too High"}, {"006", "Filament Adjust FERROR"}, {"007", "Filament PowerBoard Not Connected"}, {"008", "Filament Short Circuit"}, {"019", "Filament Overcurrent"}, {"010", "Anode Overcurrent"}, {"011", "Cathode Overcurrent"}, {"012", "Anode Overvoltage"}, {"013", "Cathode Overvoltage"}, {"014", "ARC"}, {"015", "Short Current 1"}, {"016", "Short Current 2"}, {"017", "Short Current A"}, {"018", "Short Current B"} }; char ErrorCode[20]; snprintf(ErrorCode, sizeof(ErrorCode), "PSGHR_EL_%d", nValue); char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "EL%03d", nValue); HWSend(temp, strlen(temp)); int level = 1; auto it = errorMessages.find(tmpbuf); if (it != errorMessages.end()) { m_DoseUnit.m_GenState->Update(nsGEN::AttrKey::GENERATOR_STATUS_ERROR); FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); m_MSGUnit->AddErrorMessage(ErrorCode, level, it->second.c_str()); } } else { int level = 1; char ErrorCode[20]; m_MSGUnit->DelErrorMessage(ErrorCode, level, ""); } }; auto HWEI = [this](const char* value, int length) { assert(value); int nValue = atoi(value); char tmpbuf[3] = { 0,0,0 }; tmpbuf[0] = value[0]; tmpbuf[1] = value[1]; tmpbuf[2] = value[2]; if (nValue != 0) { std::unordered_map errorMessages = { {"400", "Enter the service mode"}, {"401", "Exit the service mode"}, {"402", "Resonance Overcurrent1"}, {"403", "Resonance Overcurrent2"}, {"404", "Resonance Overcurrent3"}, {"405", "Charging, Please Wait "}, {"406", "DAC Reset "}, {"407", "X-Rays State PowerOff "}, {"408", "Fluoro Disable "}, {"409", "Fluoro Timer Warning Level Exceeded"}, {"410", "Anode Heat Warning Exceeded "}, {"411", "MA Too Low "} }; char ErrorCode[20]; snprintf(ErrorCode, sizeof(ErrorCode), "PSGHR_EI_%d", nValue); char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "EI%03d", nValue); HWSend(temp, strlen(temp)); int level = 1; auto it = errorMessages.find(tmpbuf); if (it != errorMessages.end()) { //m_DoseUnit.m_GenState->Update(nsGEN::AttrKey::GENERATOR_STATUS_ERROR); //FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); m_MSGUnit->AddWarnMessage(ErrorCode, level, it->second.c_str()); } } else { int level = 1; char ErrorCode[20]; m_MSGUnit->DelWarnMessage(ErrorCode, level, ""); } }; auto HWMSG = [this](const char* value, int length) { assert(value); int nValue = atoi(value); char tmpbuf[3] = { 0,0,0 }; tmpbuf[0] = value[0]; tmpbuf[1] = value[1]; tmpbuf[2] = value[2]; if (nValue != 0) { std::unordered_map errorMessages = { {"001", "Rotating anode protection parameters are incorrectly configured"}, {"002", "Press emergency stop of high voltage generator"}, {"003", "The first level hand brake is not triggered, and the second level hand brake is triggered"}, {"004", "The first level hand brake is pressed during the wake - up or startup process of the high - voltage generator."}, {"005", "The second level hand brake is pressed during the wake - up or startup process of the high - voltage generator."}, {"006", "Low battery power of the high - voltage generator, please recharge."}, {"007", "Anode thermal capacity exceeds the warning value."}, {"008", "Exposure time interval is too short, please wait for exposure."}, {"009", "Parameter adjustment is prohibited during exposure."}, {"010", "High - voltage generator is not ready, please confirm the status."}, {"011", "The oil tank temperature of the high - voltage generator exceeds the warning value."}, {"012", "Training cannot be conducted in this state."}, {"013", "The tube current of the high voltage generator is low."}, {"014", "The PFC module of the high voltage generator works abnormally."}, {"015", "Battery output power limits for high voltage generators."}, {"016", "The battery of the high voltage generator is charging."}, {"017", "The mA parameter of the high voltage generator exceeds the maximum tube value."}, {"018", "The kV parameter of the high voltage generator exceeds the limit value."}, {"019", "The mA parameter of the high voltage generator exceeds the limit value."}, {"020", "The ms parameter of the high voltage generator exceeds the limit value."}, {"021", "The mAs parameter of the high voltage generator exceeds the limit value."}, {"022", "Filament selection parameter exceeds the limit."}, {"023", "Anode rotation speed selection parameter exceeds the limit."}, {"024", "The exposure technical parameters of the high voltage generator exceed the limits."}, {"025", "AEC density parameter exceeds the limit."}, {"026", "AEC field selection parameter exceeds the limit."}, {"027", "AEC channel parameter exceeds the limit."}, {"028", "AEC sensitivity parameter exceeds the limit."}, {"029", "High - voltage generator power exceeds the limit."}, {"030", "Tube power exceeds the limit."}, {"031", "The frame rate parameter of the high voltage generator exceeds the limit value."}, {"032", "Exposure parameter exceeds the high - voltage generator energy storage limit."}, {"033", "High voltage generator battery pack alarm."}, {"035", "Foot brake signal is pressed during the wake - up or startup process of the high - voltage generator."}, {"036", "Cumulative fluoroscopy time alarm."}, {"037", "The console of the high voltage generator is not connected, please open the console."}, {"038", "Tube sleeve thermal capacity exceeds the warning value."}, {"049", "Bus voltage of the high - voltage generator exceeds the limit."}, {"050", "High - voltage generator does not support this exposure mode."}, {"051", "The rotation speed of the rotating anode does not meet the exposure requirements."}, {"052", "The second level hand brake is not pressed within the specified time."}, {"053", "Interlock 1 is effective during the exposure process of the high - voltage generator."}, {"054", "Timeout for feedback signal in flat panel mode."}, {"055", "The kV establishment timeout of the high voltage generator."}, {"056", "Anode thermal capacity exceeds the limit."}, {"057", "Filament calibration data abnormality."}, {"058", "Tube current is too low during training."}, {"059", "Release hand brake prematurely during exposure."}, {"060", "AEC feedback abnormality."}, {"061", "Inverter temperature of the high - voltage generator exceeds the limit."}, {"062", "kV is too low during exposure, exposure abnormality aborted."}, {"063", "kV is too high during exposure, exposure abnormality aborted."}, {"064", "Oil temperature of the high - voltage generator exceeds the limit."}, {"065", "Tube sleeve thermal capacity exceeds the limit."}, {"066", "The current exposure parameters of the high voltage generator exceed the heat capacity limit."}, {"068", "mA is too high during exposure, exposure abnormality aborted."}, {"069", "The DRVEN enable of the high voltage generator to establish a timeout."}, {"070", "Interruption in communication with the rotating anode."}, {"071", "Emergency stop is pressed during exposure."}, {"072", "The battery pack of the high voltage generator is faulty."}, {"073", "Resonant current exceeds the limit, exposure abnormality aborted(software)."}, {"074", "Anode kV exceeds the limit, exposure abnormality aborted(software)."}, {"075", "Cathode kV exceeds the limit, exposure abnormality aborted(software)."}, {"076", "Filament current exceeds the limit(software)."}, {"078", "Oil tank power limit of the high - voltage generator."}, {"080", "Deviation of anode kV and cathode kV exceeds the limit, exposure abnormality aborted."}, {"081", "Power exceeds the limit during exposure, exposure abnormality aborted."}, {"082", "The external synchronization signal of the high voltage generator has timed out."}, {"083", "Fan fault in high voltage generator."}, {"084", "High voltage generator InterLock1 effective."}, {"085", "High voltage generator InterLock2 effective."}, {"087", "Release foot brake prematurely during exposure."}, {"088", "Foot brake signal abnormality."}, {"089", "The DA chip of the high voltage generator is abnormal."}, {"090", "Timeout for cumulative fluoroscopy time."}, {"091", "The external discharge line of the high voltage generator enables the signal to timeout."}, {"092", "XRAYReady invalid."}, {"093", "High voltage generator during exposure interlock 2 effective."} }; char ErrorCode[20]; snprintf(ErrorCode, sizeof(ErrorCode), "PSGHR_MSG_%d", nValue); int level = 1; /*char temp[50] = { 0 }; snprintf(temp, sizeof(temp), "MSG%03d", nValue); HWSend(temp, strlen(temp));*/ auto it = errorMessages.find(tmpbuf); if (it != errorMessages.end()) { FINFO("WarnCode: {$}, Level: {$}, ResInfo: {$}\n", ErrorCode, level, it->second.c_str()); m_MSGUnit->AddWarnMessage(ErrorCode, level, it->second.c_str()); } } else { int level = 1; char WarnCode[20]{ "" }; m_MSGUnit->DelWarnMessage(WarnCode, level, ""); } }; //==IN==:TU0 WS1 FO0 ET0 FI010 FS001 FN0 HE000 auto HWTU = [this](const char* value, int length) -> void { assert(value); FINFO("recv TU={$},len={$}", value, length); char tmpbuf[3] = { 0,0,0 }; int tmpWS, tmpFO, tmpET, tmpField, tmpFilm, tmpDensity, tmpHE; //ws tmpbuf[0] = value[4]; tmpWS = atoi(tmpbuf); m_DoseUnit.m_WS->Update(tmpWS); { FireNotify(m_DoseUnit.m_WS->GetKey(), m_DoseUnit.m_WS->JSGet()); } //FO tmpbuf[0] = value[8]; tmpFO = atoi(tmpbuf); m_DoseUnit.m_Focus->Update(tmpFO); FireNotify(AttrKey::FOCUS, m_DoseUnit.m_Focus->JSGet()); FINFO("Current focus:{$}, FO={$}", atoi(m_DoseUnit.m_Focus->JSGet().c_str()) ? "large focus" : "small focus", m_DoseUnit.m_Focus->JSGet().c_str()); //ET tmpbuf[0] = value[12]; tmpET = atoi(tmpbuf); m_DoseUnit.m_Techmode->Update(tmpET); FireNotify(AttrKey::TECHMODE, m_DoseUnit.m_Techmode->JSGet()); //FIELD tmpbuf[0] = value[16]; tmpbuf[1] = value[17]; tmpbuf[2] = value[18]; tmpField = atoi(tmpbuf); if (m_DoseUnit.m_AECField->Update(tmpField)) FireNotify(AttrKey::AECFIELD, m_DoseUnit.m_AECField->JSGet()); //Film tmpbuf[0] = value[22]; tmpbuf[1] = value[23]; tmpbuf[2] = value[24]; tmpFilm = atoi(tmpbuf); if (m_DoseUnit.m_AECFilm->Update(tmpFilm)) FireNotify(AttrKey::AECFILM, m_DoseUnit.m_AECFilm->JSGet()); //Density tmpbuf[0] = value[29]; tmpbuf[1] = 0; tmpbuf[2] = 0; tmpDensity = atoi(tmpbuf); if (m_DoseUnit.m_AECDensity->Update(tmpDensity)) FireNotify(AttrKey::AECDENSITY, m_DoseUnit.m_AECDensity->JSGet()); //HE tmpbuf[0] = value[33]; tmpbuf[1] = value[34]; tmpbuf[2] = value[35]; tmpHE = atoi(tmpbuf); m_DoseUnit.m_HE->Update(tmpHE); FireNotify(m_DoseUnit.m_HE->GetKey(), m_DoseUnit.m_HE->JSGet()); FINFO("parse tmpWS={$}, tmpFO={$}, tmpET={$}, tmpField={$}, tmpFilm={$}, tmpDensity={$}, tmpHE={$}", tmpWS, tmpFO, tmpET, tmpField, tmpFilm, tmpDensity, tmpHE); }; auto HWST = [this](const char* value, int length) { assert(value); int genStatus = atoi(value); FINFO("genStatus={$}", genStatus); switch (genStatus) { case 1: FDEBUG("get Gen Status_1:GENSTATE {$} -> STATUS_INIT", m_DoseUnit.m_GenState->JSGet()); ///*if (m_DoseUnit.m_GenState->Update(nsGEN::AttrKey::GENERATOR_STATUS_INIT)) // FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet());*/ break; case 2: FDEBUG("get Gen Status_2:GENSTATE {$} -> STATUS_STANDBY", m_DoseUnit.m_GenState->JSGet()); if (m_isFirstHWPhase) { HWSend("RE", 2); // HWSend("RR", 2); HWSend("RS", 2); HWSend("ET?", 3); HWSend("ST?", 3); m_isFirstHWPhase = false; } if (m_DoseUnit.m_GenState->Update(nsGEN::AttrKey::GENERATOR_STATUS_STANDBY)) FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); break; case 3: // Rad Preparation Phase /*FDEBUG("get Gen Status_3:RAD_OFF(PR0) -> RAD_PREPARE(PR1)"); if (m_DoseUnit.m_GenSynState->Update(nsGEN::AttrKey::GENERATOR_RAD_PREPARE)) FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet());*/ if (m_iLoopTime != PSGHR_LoopExpHBTime) { FDEBUG("get Gen Status_3:quicken loopTime[{$}]->[{$}]", m_iLoopTime.load(), PSGHR_LoopExpHBTime); m_iLoopTime = PSGHR_LoopExpHBTime; } break; case 4: FDEBUG("get Gen Status_4:PREPARE(PR1) -> RAD_READY(PR2)"); /*if (m_DoseUnit.m_GenSynState->Update(nsGEN::AttrKey::GENERATOR_RAD_READY)) FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet());*/ break; case 5: FDEBUG("get Gen Status_5:RAD_READY(PR2) -> X-Ray On(XR2)"); if (m_DoseUnit.m_GenState->Update(nsGEN::AttrKey::GENERATOR_STATUS_EXP)) FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); /*if (m_DoseUnit.m_GenSynState->Update(nsGEN::AttrKey::GENERATOR_RAD_XRAYON)) FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet());*/ break; case 6: FDEBUG("get Gen Status_6:X-Ray On(XR2) -> X-Ray Off(XR0)"); /*if (m_DoseUnit.m_GenSynState->Update(nsGEN::AttrKey::GENERATOR_RAD_XRAYOFF)) FireNotify(m_DoseUnit.m_GenSynState->GetKey(), m_DoseUnit.m_GenSynState->JSGet());*/ break; case 7: FDEBUG("get Gen Status_7:GENSTATE {$} -> STATUS_ERROR", m_DoseUnit.m_GenState->JSGet()); if (m_DoseUnit.m_GenState->Update(nsGEN::AttrKey::GENERATOR_STATUS_ERROR)) FireNotify(AttrKey::GENSTATE, m_DoseUnit.m_GenState->JSGet()); break; case 8: FDEBUG("get Gen Status_8:in Calibration"); break; default: FDEBUG("get Gen Status:[{$}] unknown", genStatus); break; } }; auto HWSR = [this](const char* value, int length) { assert(value); int stopReason = atoi(value); FINFO("stopReason={$}", stopReason); switch (stopReason) { case 0: FDEBUG("Exposure stop reason:AEC feedback voltage is too low"); break; case 5: FDEBUG("Exposure stop reason: Stop exposure manually"); break; case 6: FDEBUG("Exposure stop reason: door lock open"); break; case 7: FDEBUG("Exposure stop reason:Bulb tube anode ignition"); break; case 8: FDEBUG("Exposure stop reason:Bulb cathode ignition"); break; case 9: FDEBUG("Exposure stop reason:The pipe is lit"); break; case 10: FDEBUG("Exposure stop reason:KV is too low or too high"); break; case 11: FDEBUG("Exposure stop reason:Ma too low"); break; case 12: FDEBUG("Exposure stop reason:Set ms reached"); break; case 13: FDEBUG("Exposure stop reason:Set mAs reached"); break; case 14: FDEBUG("Exposure stop reason:AEC dose reached"); break; default: FDEBUG("Exposure stop reason:default"); break; } }; arFrame.clear(); arFrame.push_back(tFrameMapping("EL", 2, HWEL)); arFrame.push_back(tFrameMapping("EI", 2, HWEI)); arFrame.push_back(tFrameMapping("ER", 2, HWER)); arFrame.push_back(tFrameMapping("MSG", 3, HWMSG)); arFrame.push_back(tFrameMapping("TU", 2, HWTU)); arFrame.push_back(tFrameMapping("EC", 2, HWNotProcess)); arFrame.push_back(tFrameMapping("PW", 2, HWNotProcess)); arFrame.push_back(tFrameMapping("KV", 2, HWKV)); arFrame.push_back(tFrameMapping("MX", 2, HWMAS)); arFrame.push_back(tFrameMapping("MA", 2, HWMA)); arFrame.push_back(tFrameMapping("MS", 2, HWMS)); arFrame.push_back(tFrameMapping("VP", 2, HWVP)); arFrame.push_back(tFrameMapping("PA", 2, HWPA)); arFrame.push_back(tFrameMapping("AP", 2, HWAPDOSE)); arFrame.push_back(tFrameMapping("ET", 2, HWTechmode)); arFrame.push_back(tFrameMapping("FO", 2, HWFocus)); arFrame.push_back(tFrameMapping("FI", 2, HWAECField)); arFrame.push_back(tFrameMapping("FS", 2, HWAECFilm)); arFrame.push_back(tFrameMapping("FN", 2, HWAECDensity)); arFrame.push_back(tFrameMapping("WS", 2, HWWS)); arFrame.push_back(tFrameMapping("PR", 2, HWPR)); arFrame.push_back(tFrameMapping("XR", 2, HWXR)); arFrame.push_back(tFrameMapping("AT", 2, HWATDOSE)); arFrame.push_back(tFrameMapping("FLK", 3, HWFLK)); arFrame.push_back(tFrameMapping("FLM", 3, HWFLM)); arFrame.push_back(tFrameMapping("FLW", 3, HWFLW)); arFrame.push_back(tFrameMapping("FLI", 3, HWFLI)); arFrame.push_back(tFrameMapping("FLT", 3, HWFLT)); arFrame.push_back(tFrameMapping("FLS", 3, HWFLS)); arFrame.push_back(tFrameMapping("FLF", 3, HWFLF)); arFrame.push_back(tFrameMapping("FLP", 3, HWFLP)); arFrame.push_back(tFrameMapping("FLX", 3, HWFLX)); arFrame.push_back(tFrameMapping("FLA", 3, HWFLA)); arFrame.push_back(tFrameMapping("FLD", 3, HWFLD)); arFrame.push_back(tFrameMapping("FLC", 3, HWFLD)); arFrame.push_back(tFrameMapping("FLO", 3, HWFLO)); arFrame.push_back(tFrameMapping("HE", 2, HWEHE)); arFrame.push_back(tFrameMapping("HH", 2, HWHH)); arFrame.push_back(tFrameMapping("DA", 2, HWDAP)); arFrame.push_back(tFrameMapping("DV", 2, HWDAP)); arFrame.push_back(tFrameMapping("DS", 2, HWDS)); arFrame.push_back(tFrameMapping("ST", 2, HWST)); arFrame.push_back(tFrameMapping("SR", 2, HWSR)); arFrame.push_back(tFrameMapping("P", 1, HWPR)); } bool nsGEN::PSGHRDevice::ReConnect() { FINFO("Enter PSG_reConnect"); m_SCF->Disconnect(); if (!pIODriver) { FINFO("PSG_reConnect:Driver null"); } else { // ��Ҫ�� pIODriver ת��Ϊ PSGHRDriver* PSGHRDriver* driver = dynamic_cast(pIODriver.get()); if (driver && driver->ReConnection()) { FireErrorMessage(false, 1, "lost Connect"); m_bConnectFlag = true; FINFO("PSG_reConnect success"); return true; } else { FINFO("PSG_reConnect failed"); } } return false; } int nsGEN::PSGHRDevice::GridMSMargin() { return 0; } bool nsGEN::PSGHRDevice::CalculateAppropriateMA(float& inoutMAS, float& inoutMA, float& inoutMS) { FINFO("Enter CalculateAppropriateMA:MAS[{$}],MA[{$}],MS[{$}]", inoutMAS, inoutMA, inoutMS); if (m_DoseUnit.m_Focus->Get() == AttrKey::FOCUS_TYPE::FOCUS_LARGE) { m_iMaxPower = PSGHR_LARGE_POWER; } else { m_iMaxPower = PSGHR_SMALL_POWER; } int currKV = 0 , tempMA = 0, tempMS = 0; currKV = m_DoseUnit.m_KV->Get(); tempMA = m_iMaxPower * 1000 / currKV; FDEBUG("power[{$}]*1000 / KV[{$}] = MAX_MA[{$}]", m_iMaxPower, currKV, tempMA); if (tempMA > PSGHR_MAX_MA) { tempMA = PSGHR_MAX_MA; FDEBUG(" MAX_MA too big,be close to range_right[{$}]", tempMA); } else if (tempMA < PSGHR_MIN_MA) { FWARN(" MAX_MA too small,compute failed"); return false; } for (int i = tempMA;i >= PSGHR_MIN_MA; i--) { tempMS = inoutMAS * 1000.0 / i; FDEBUG("MAS[{$}]*1000 / temp_MA[{$}] = temp_MS[{$}]", inoutMAS, i, tempMS); } FDEBUG("can not use MAS[{$}]compute Appropriate MA MS", inoutMAS); return false; } void nsGEN::PSGHRDevice::ReSendFailedAction(string& cmdNum) { } int nsGEN::PSGHRDevice::GetGenState() { if (m_DoseUnit.m_GenState != NULL) { return m_DoseUnit.m_GenState->Get(); } else { return 0; } } int nsGEN::PSGHRDevice::LoadConfig(string configfile) { FINFO("=====================LoadConfig========================="); // ����ļ��Ƿ���� std::ifstream file(configfile); if (!file) { // �ļ������ڣ�ֱ�ӷ��ؿյ�Connection���� FINFO("Config file does not exist: {$}", configfile.c_str()); return -1; } if (m_bIsConfigLoaded) { FINFO("Configuration already loaded."); return 0; } ResDataObject temp; temp.loadFile(configfile.c_str()); m_GenConfig = temp["CONFIGURATION"]; TransJsonText(m_GenConfig); if (m_GenConfig.GetKeyCount("loopEnable") > 0) { m_bExtraFlag = (int)m_GenConfig["loopEnable"]; } if (m_GenConfig.GetKeyCount(ConfKey::CcosTubeInfo) > 0) { string tempValue = (string)m_GenConfig[ConfKey::CcosTubeInfo]; m_DoseUnit.m_TubeInfo.reset(new TUBEINFOMould(tempValue)); FireNotify(AttrKey::TUBEINFO, m_DoseUnit.m_TubeInfo->JSGet()); } if (m_GenConfig.GetKeyCount(ConfKey::CcosFocusSmall) > 0) { float tempValue = (float)m_GenConfig[ConfKey::CcosFocusSmall]; m_DoseUnit.m_FocusSmall = tempValue; } if (m_GenConfig.GetKeyCount(ConfKey::CcosFocusLarge) > 0) { float tempValue = (float)m_GenConfig[ConfKey::CcosFocusLarge]; m_DoseUnit.m_FocusLarge = tempValue; } if (m_GenConfig.GetKeyCount("GenCtrlMode") > 0) { m_nCtlMode = (float)m_GenConfig["GenCtrlMode"];//default 2 float tempValue = (float)m_GenConfig[ConfKey::CcosFocusLarge]; } if (m_GenConfig.GetKeyCount("USECECMD") > 0) { m_bUseCECmd = (bool)m_GenConfig["USECECMD"]; } m_bIsConfigLoaded = true; return 0; } bool nsGEN::PSGHRDevice::EnableBucky(int nbucky) { char temp[50]{ 0 }; snprintf(temp, sizeof(temp), "BU%1d", nbucky); return HWSend(temp, strlen(temp)); } bool nsGEN::PSGHRDevice::ECHO(void) { return HWSend("EC", 2); } bool nsGEN::PSGHRDevice::SetABSModeNative(int nMode) { char temp[50]{ 0 }; snprintf(temp, sizeof(temp), "FLA%1d", nMode); return HWSend(temp, strlen(temp)); } bool nsGEN::PSGHRDevice::StartHardwareStatusThread() { if (!m_pHardwareStatusThread.joinable()) { m_pHardwareStatusThread = std::thread(HardwareStatusThread, this); return true; } return false; } void PSGHRDevice::HardwareStatusThread(PSGHRDevice* pParam) { PSGHRDevice* pCurGen = pParam; if (pCurGen == NULL) { return; } pCurGen->HeartBeatFlag = true; int messageIndex = 0; int currtTime = pCurGen->m_iLoopTime; while (pCurGen->m_bExtraFlag) { currtTime = pCurGen->m_iLoopTime; Sleep(currtTime); if (messageIndex % 5 == 0) { pCurGen->HWSend("HE?", 3); Sleep(100); pCurGen->HWSend("ST?", 3); } messageIndex++; } } //----------------------------------------------------------------------------- // PSGHRDriver //----------------------------------------------------------------------------- nsGEN::PSGHRDriver::PSGHRDriver() : m_scfWrapper(std::make_shared()) { m_pAttribute.reset(new ResDataObject()); m_pDescription.reset(new ResDataObject()); } nsGEN::PSGHRDriver::~PSGHRDriver() { Disconnect(); } void nsGEN::PSGHRDriver::Prepare() { // ��ʼ����־ϵͳ std::string strLogPath = GetProcessDirectory() + R"(/Conf/log_config.xml)"; std::string LogHost = "DevPSGHR"; std::string moduleName = "DevPSGHR"; bool ret = initLogModule( LogHost, // ��������������־·���е�{host}ռλ���� moduleName, // Ψһģ���� strLogPath, // �����ļ�·�� true // �Ƿ����������̨����ѡ�� ); if (!ret) { std::cerr << "Log init failed!" << std::endl; return; } PSGHR_SetLocalModuleName(moduleName); m_SCFDllName = GetConnectDLL(m_ConfigFileName); FINFO("OK."); } std::string nsGEN::PSGHRDriver::DriverProbe() { FINFO("DriverProbe in \n"); ResDataObject r_config, HardwareInfo; if (r_config.loadFile(m_ConfigFileName.c_str())) { HardwareInfo.add("MajorID", r_config["CONFIGURATION"]["MajorID"]); HardwareInfo.add("MinorID", r_config["CONFIGURATION"]["MinorID"]); HardwareInfo.add("VendorID", r_config["CONFIGURATION"]["VendorID"]); HardwareInfo.add("ProductID", r_config["CONFIGURATION"]["ProductID"]); HardwareInfo.add("SerialID", r_config["CONFIGURATION"]["SerialID"]); } else { HardwareInfo.add("MajorID", "Generator"); HardwareInfo.add("MinorID", "Dr"); HardwareInfo.add("VendorID", "PSGHR"); HardwareInfo.add("ProductID", "HF"); HardwareInfo.add("SerialID", "Drv"); } string ret = HardwareInfo.encode(); return ret; } bool nsGEN::PSGHRDriver::ReConnection() { Disconnect(); FINFO("ReConnection:SCF Disconnect"); ResDataObject Connection = GetConnectParam(m_ConfigFileName); FINFO("ReConnection:{$} \n", Connection.encode()); auto erCode = m_scfWrapper->Connect(Connection, &PSGHRDriver::callbackPackageProcess, SCF_PACKET_TRANSFER, 3000); if (erCode == SCF_SUCCEED) { Sleep(1000); // �����������ݽ��ջص� m_scfWrapper->SetDataReceivedCallback([this](const char* data, uint32_t length) { this->Dequeue(data, length); }); // �����Զ����� m_scfWrapper->StartAutoReceive(); return true; } else { FINFO("ReConnection failed"); } return false; } bool nsGEN::PSGHRDriver::Connect() { std::lock_guard lock(m_connectionMutex); const auto currentState = m_connectionState.load(); auto now = std::chrono::steady_clock::now(); // 1. 处理可重试的失败状态 if (currentState == ConnectionState::Failed) { if ((now - m_lastConnectionAttempt) >= RETRY_INTERVAL && m_connectionRetryCount < MAX_RETRY_COUNT) { m_connectionState = ConnectionState::Disconnected; } else { return false; // 不满足重试条件,直接返回 } } // 2. 检查无效状态(正在连接/已连接但实际有效) if (currentState == ConnectionState::Connecting) { FINFO("Already connecting (type: {$})", m_currentConnType == ConnectionType::Serial ? "Serial" : "Ethernet"); return true; } if (currentState == ConnectionState::Connected && m_scfWrapper && m_scfWrapper->IsConnected()) { FINFO("Already connected (type: {$})", m_currentConnType == ConnectionType::Serial ? "Serial" : "Ethernet"); return true; } // 3. 检查重试间隔 if (m_connectionRetryCount > 0 && (now - m_lastConnectionAttempt) < RETRY_INTERVAL) { FINFO("Retry in {$}s (type: {$})", std::chrono::duration_cast(RETRY_INTERVAL - (now - m_lastConnectionAttempt)).count(), m_currentConnType == ConnectionType::Serial ? "Serial" : "Ethernet"); return false; } ResDataObject connParam = GetConnectParam(m_ConfigFileName); std::string connPortStr = ""; std::string connTypeStr = (std::string)connParam["type"]; // 从配置读取type字段 m_currentConnType = (connTypeStr == "COM") ? ConnectionType::Serial : ConnectionType::Ethernet; if (m_currentConnType == ConnectionType::Serial) { connPortStr = (std::string)connParam["port"];// 从配置读取port字段 // 查找配置端口在现有端口列表中的位置 auto it = std::find(m_serialPorts.begin(), m_serialPorts.end(), connPortStr); if (it == m_serialPorts.end()) { // 配置的端口不在列表中,添加到首位 FINFO("Configured serial port {$} not found, adding to front of port list", connPortStr); m_serialPorts.insert(m_serialPorts.begin(), connPortStr); } else if (it != m_serialPorts.begin()) { // 配置的端口存在但不在首位,移动到首位 FINFO("Moving configured serial port {$} to front of port list", connPortStr); m_serialPorts.erase(it); m_serialPorts.insert(m_serialPorts.begin(), connPortStr); } } // 4. 执行连接流程 m_connectionState = ConnectionState::Connecting; m_lastConnectionAttempt = now; std::string connInfo; try { if (m_currentConnType == ConnectionType::Serial) { // 串口连接:使用当前索引的端口 std::string currentPort = m_serialPorts[m_currentSerialPortIndex]; connParam.update("port", currentPort.c_str()); // 将当前尝试的端口写入参数 connInfo = "Serial (port: " + currentPort + ")"; } else { // 网口连接:直接使用配置参数 connInfo = "Ethernet (ip: " + std::string(connParam["ip"]) + ")"; } FINFO("Enter Connect ({$}), config: {$}", connInfo, connParam.encode()); if (!m_scfWrapper->Initialize(m_SCFDllName)) { FINFO("Init failed: {$}", m_scfWrapper->GetLastError()); m_connectionState = ConnectionState::Failed; return false; } m_scfWrapper->SetDataReceivedCallback([this](const char* data, uint32_t length) { this->Dequeue(data, length); }); auto erCode = m_scfWrapper->Connect(connParam, &PSGHRDriver::callbackPackageProcess, SCF_PACKET_TRANSFER, 3000); if (erCode != SCF_SUCCEED || !m_scfWrapper->StartAutoReceive()) { FINFO("Connect failed (code: {$}) for {$}", erCode, connInfo); m_scfWrapper->Disconnect(); m_connectionState = ConnectionState::Failed; // 串口连接:未遍历完所有端口时,优先切换端口重试(不计入总重试次数) if (m_currentConnType == ConnectionType::Serial) { int nextIndex = (m_currentSerialPortIndex + 1) % m_serialPorts.size(); // 判断是否已遍历所有端口(当前索引是最后一个时,nextIndex会回到0) bool allPortsTried = (nextIndex == 0); if (!allPortsTried) { // 未遍历完所有端口:切换到下一端口,不增加重试计数 m_currentSerialPortIndex = nextIndex; m_connectionRetryCount = 0; FINFO("Trying next serial port: {$}", m_serialPorts[nextIndex]); return false; // 触发外部线程立即尝试下一端口 } else { // 已遍历所有端口:重置到第一个端口,增加重试计数(进入间隔等待) m_currentSerialPortIndex = 0; m_connectionRetryCount++; FINFO("All serial ports tried, retry count: {$}/{$}", m_connectionRetryCount, MAX_RETRY_COUNT); return false; } } // 所有端口失败(串口)或网口失败,才增加总重试计数 m_connectionRetryCount++; return false; } // 连接成功:重置状态 m_connectionState = ConnectionState::Connected; m_connectionRetryCount = 0; m_currentSerialPortIndex = 0; // 重置串口端口索引 FINFO("Connected successfully ({$})", connInfo); return true; } catch (const std::exception& e) { FINFO("Exception for {$}: {$}", connInfo, e.what()); m_connectionState = ConnectionState::Failed; m_connectionRetryCount++; return false; } } auto nsGEN::PSGHRDriver::CreateDevice(int index) -> std::unique_ptr { FINFO("CreateDevice in\n"); m_pDevice = new PSGHRDevice(EventCenter, m_scfWrapper, m_ConfigFileName); auto dev = std::unique_ptr (new IODevice(m_pDevice)); FINFO("CreateDevice out\n"); return dev; } void nsGEN::PSGHRDriver::FireNotify(int code, std::string key, std::string content) { EventCenter->OnNotify(code, key, content); } bool nsGEN::PSGHRDriver::isConnected() const { const auto state = m_connectionState.load(); // 1. 连接中/实际已连接:返回true(无需重连) if (state == ConnectionState::Connecting || (m_scfWrapper && m_scfWrapper->IsConnected())) { FINFO(state == ConnectionState::Connecting ? "Connecting in progress" : "Already connected"); return true; } // 2. 失败状态处理:判断是否允许重试 if (state == ConnectionState::Failed) { auto now = std::chrono::steady_clock::now(); const auto timeSinceLast = now - m_lastConnectionAttempt; // 2.1 达到最大重试次数,但超过重置间隔:重置计数,允许重新重试 if (m_connectionRetryCount >= MAX_RETRY_COUNT && timeSinceLast >= RESET_RETRY_AFTER) { FINFO("Max retries reached, resetting count after {$}s", std::chrono::duration_cast(timeSinceLast).count()); m_connectionRetryCount = 0; // 重置计数(因mutable修饰,const函数可修改) } // 2.2 不适合重连(时间未到 或 次数仍超限):返回true阻止重连 if (timeSinceLast < RETRY_INTERVAL || m_connectionRetryCount >= MAX_RETRY_COUNT) { FINFO(timeSinceLast < RETRY_INTERVAL ? "Retry later ({$}s)" : "Max retries, waiting {$}s to reset", std::chrono::duration_cast( timeSinceLast < RETRY_INTERVAL ? RETRY_INTERVAL - timeSinceLast : RESET_RETRY_AFTER - timeSinceLast ).count() ); return true; } } // 3. 其他情况(适合重连):返回false触发Connect() return false; } std::string nsGEN::PSGHRDriver::GetResource() { FDEBUG("GetResource"); ResDataObject r_config, temp; if (!temp.loadFile(m_ConfigFileName.c_str())) { return ""; } m_ConfigAll = temp; r_config = temp["CONFIGURATION"]; m_Configurations = r_config; ResDataObject DescriptionTemp; ResDataObject DescriptionSend; ResDataObject m_DescriptionSend; ResDataObject ListTemp; string strTemp = ""; string strIndex = ""; int nTemp = -1; char sstream[10] = { 0 }; string strValue = ""; string strType = ""; /*** * 1. ͨ��ѭ����������������д��pDeviceConfig * 2. ��¼��������ڲ�key�Լ��������ͣ����Ͷ�Ӧ�˲�ͬ�����ļ�·�������ڶ�д��ʵֵ ***/ try { int nConfigInfoCount = (int)m_Configurations["ConfigToolInfo"].GetKeyCount("AttributeInfo"); m_pAttribute->clear(); m_pDescription->clear(); for (int nInfoIndex = 0; nInfoIndex < nConfigInfoCount; nInfoIndex++) { DescriptionTemp.clear(); DescriptionSend.clear(); ListTemp.clear(); //AttributeType strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeDescripition"]["Type"]; DescriptionTemp.add(ConfKey::CcosType, strTemp.c_str());//CcosGeneratorAttribute DescriptionSend.add(ConfKey::CcosType, strTemp.c_str());//CcosGeneratorAttribute strType = strTemp; //AttributeKey strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["InnerKey"]; nTemp = (int)m_Configurations["ConfigToolInfo"][nInfoIndex]["PathID"]; GetDeviceConfigValue(r_config, strTemp.c_str(), nTemp, strValue); //printf("********************************innerkey=%s --strValue = %s\n", strTemp.c_str(), strValue.c_str()); strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeKey"]; if ("int" == strType) { (*m_pAttribute).add(strTemp.c_str(), atoi(strValue.c_str())); } else if ("float" == strType) { (*m_pAttribute).add(strTemp.c_str(), atoi(strValue.c_str())); } else { (*m_pAttribute).add(strTemp.c_str(), strValue.c_str()); } //printf("********************************outkey =%s --strValue = %s\n", strTemp.c_str(), strValue.c_str()); //AttributeAccess strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeDescripition"]["Access"]; DescriptionTemp.add(ConfKey::CcosAccess, strTemp.c_str()); DescriptionSend.add(ConfKey::CcosAccess, strTemp.c_str()); /* //AttributeRangeMin strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeDescripition"]["RangeMin"]; if (strTemp != "") //����Ҫ��������Ϊ�� { DescriptionTemp.add(ConfKey::CcosRangeMin, strTemp.c_str()); } //AttributeRangeMax strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeDescripition"]["RangeMax"]; if (strTemp != "") //����Ҫ��������Ϊ�� { DescriptionTemp.add(ConfKey::CcosRangeMax, strTemp.c_str()); } */ //AttributeList nTemp = m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeDescripition"]["ListNum"]; if (nTemp > 0) { for (int nListIndex = 0; nListIndex < nTemp; nListIndex++) { strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeDescripition"]["ListInfo"][nListIndex]; auto temKey = std::to_string(nListIndex); ListTemp.add(temKey.c_str(), strTemp.c_str()); } DescriptionTemp.add(ConfKey::CcosList, ListTemp); DescriptionSend.add(ConfKey::CcosList, ListTemp.encode()); } //AttributeRequired strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeDescripition"]["Required"]; DescriptionTemp.add(ConfKey::CcosRequired, strTemp.c_str()); DescriptionSend.add(ConfKey::CcosRequired, strTemp.c_str()); //AttributeDefaultValue strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeDescripition"]["DefaultValue"]; if (strTemp != "") { DescriptionTemp.add(ConfKey::CcosDefaultValue, strTemp.c_str()); DescriptionSend.add(ConfKey::CcosDefaultValue, strTemp.c_str()); } strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeKey"]; (*m_pDescription).add(strTemp.c_str(), DescriptionTemp); m_DescriptionSend.add(strTemp.c_str(), DescriptionSend.encode()); } } catch (ResDataObjectExption& e) { FERROR("Get config error: {$}", e.what()); return ""; } ResDataObject resDeviceResource; resDeviceResource.add(ConfKey::CcosGeneratorAttribute, (*m_pAttribute)); resDeviceResource.add(ConfKey::CcosGeneratorDescription, (*m_pDescription)); ResDataObject DescriptionTempEx; DescriptionTempEx.add(ConfKey::CcosGeneratorConfig, resDeviceResource); m_DeviceConfig.clear(); m_DeviceConfig = DescriptionTempEx; //FDEBUG("local ************* get resource over {$}", DescriptionTempEx.encode()); //printf("local ************* get resource over %s \n", DescriptionTempEx.encode()); resDeviceResource.clear(); resDeviceResource.add(ConfKey::CcosGeneratorAttribute, (*m_pAttribute)); resDeviceResource.add(ConfKey::CcosGeneratorDescription, m_DescriptionSend); DescriptionTempEx.clear(); DescriptionTempEx.add(ConfKey::CcosGeneratorConfig, resDeviceResource); m_DeviceConfigSend.clear(); m_DeviceConfigSend = DescriptionTempEx; string res = m_DeviceConfigSend.encode(); //printf("%s", res.c_str()); //FDEBUG("get resource over {$}", DescriptionTempEx.encode()); //("************* get resource over %s \n", DescriptionTempEx.encode()); return res; } std::string nsGEN::PSGHRDriver::DeviceProbe() { FINFO("std::string nsGEN::PSGHRDriver::DeviceProbe() in\n"); ResDataObject r_config, HardwareInfo; if (r_config.loadFile(m_ConfigFileName.c_str())) { HardwareInfo.add("MajorID", r_config["CONFIGURATION"]["MajorID"]); HardwareInfo.add("MinorID", r_config["CONFIGURATION"]["MinorID"]); HardwareInfo.add("VendorID", r_config["CONFIGURATION"]["VendorID"]); HardwareInfo.add("ProductID", r_config["CONFIGURATION"]["ProductID"]); HardwareInfo.add("SerialID", r_config["CONFIGURATION"]["SerialID"]); } else { HardwareInfo.add("MajorID", "Generator"); HardwareInfo.add("MinorID", "Dr"); HardwareInfo.add("VendorID", "PSGHR"); HardwareInfo.add("ProductID", "HF"); HardwareInfo.add("SerialID", "Dev"); } string ret = HardwareInfo.encode(); FINFO("std::string nsGEN::PSGHRDriver::DeviceProbe() out\n"); return ret; } void nsGEN::PSGHRDriver::Disconnect() { if (m_scfWrapper) { m_scfWrapper->StopAutoReceive(); m_scfWrapper->Disconnect(); } } void nsGEN::PSGHRDriver::Dequeue(const char* Packet, DWORD Length) { DecodeFrame(Packet, Length); } PACKET_RET nsGEN::PSGHRDriver::callbackPackageProcess(const char* RecData, uint32_t nLength, uint32_t& PacketLength) { if (nLength < 1) { FINFO("nLength < 1, nLength=={$} \n", nLength); return PACKET_USELESS; } for (DWORD i = 0; i < nLength - 1; i++) { if (RecData[i] == 0x02) { if (i != 0) { PacketLength = i; char strtemp[100] = { 0 }; memcpy(strtemp, RecData, i); strtemp[PacketLength + 1] = 0; return PACKET_USELESS; } } if (RecData[i] == 0x03) { PacketLength = i + 2; char strtemp[100] = { 0 }; memcpy(strtemp, RecData, i); strtemp[PacketLength + 1] = 0; FINFO("==IN==:{$}\n", strtemp); return PACKET_ISPACKET; } } return PACKET_NOPACKET; } bool nsGEN::PSGHRDriver::GetDeviceConfig(std::string& Cfg) { Cfg = m_DeviceConfigSend.encode(); printf("GetDeviceConfig over , %s", Cfg.c_str()); return true; } bool nsGEN::PSGHRDriver::SetDeviceConfig(std::string Cfg) { FINFO("--Func-- SetDeviceConfig {$}\n", Cfg.c_str()); printf("\n--Func-- SetDeviceConfig %s\n", Cfg.c_str()); ResDataObject DeviceConfig; DeviceConfig.decode(Cfg.c_str()); ResDataObject DescriptionTempEx; DescriptionTempEx = DeviceConfig["DeviceConfig"]["Attribute"]; FDEBUG("Attribute:{$}", DescriptionTempEx.encode()); bool bSaveFile = false; //true:���±��������ļ� string strAccess = ""; for (int i = 0; i < DescriptionTempEx.size(); i++) { string strKey = DescriptionTempEx.GetKey(i); FINFO("{$}", strKey.c_str()); printf("%s\n", strKey.c_str()); try { if (m_pAttribute->GetFirstOf(strKey.c_str()) >= 0) { strAccess = (string)(*m_pDescription)[strKey.c_str()]["Access"]; if ("RW" == strAccess) { //�޸Ķ�Ӧ���ã���������Ԫ��������Ҫͬʱ�������޸ĺ����޸���ʵֵ //1. �޸��ڴ��е�ֵ�����ڸ��ϲ㷢��Ϣ (*m_pAttribute)[strKey.c_str()] = DescriptionTempEx[i]; //2. �õ�Innerkey int nConfigInfoCount = (int)m_Configurations["ConfigToolInfo"].GetKeyCount("AttributeInfo"); FINFO("nConfigInfoCount {$}", nConfigInfoCount); string strTemp = ""; //�洢AttributeKey for (int nInfoIndex = 0; nInfoIndex < nConfigInfoCount; nInfoIndex++) { strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["AttributeKey"]; if (strTemp == strKey) { strTemp = (string)m_Configurations["ConfigToolInfo"][nInfoIndex]["InnerKey"]; break; } } //3. �޸������ļ��е�ֵ if (SetDeviceConfigValue(m_Configurations, strTemp.c_str(), 1, DescriptionTempEx[i])) { FDEBUG("SetDeviceConfigValue over"); bSaveFile = true; } } else { FINFO("{$} is not a RW configuration item", strKey.c_str()); } } else { FINFO("without this attribute {$}", strKey.c_str()); } } catch (ResDataObjectExption& e) { printf("\nSetDriverConfig crashed: %s\n", e.what()); FERROR("SetDriverConfig crashed: {$}", e.what()); return false; } } if (bSaveFile) { //3. ���±��������ļ� SaveConfigFile(true); } return true; } bool nsGEN::PSGHRDriver::SaveConfigFile(bool bSendNotify) { m_ConfigAll["CONFIGURATION"] = m_Configurations; bool bRt = m_ConfigAll.SaveFile(m_ConfigFileName.c_str()); FINFO("SaveConfigFile over {$}", bRt); return true; } bool nsGEN::PSGHRDriver::GetDeviceConfigValue(ResDataObject config, const char* pInnerKey, int nPathID, string& strValue) { strValue = ""; string strTemp = pInnerKey; if (1 == nPathID) //��DriverConfig·����ÿ��DPC�Լ��������ļ���ȡ { int pos = 0; ResDataObject resTemp = config; while ((pos = strTemp.find_first_of(',')) != string::npos) { string Key = strTemp.substr(0, pos); string TempValue = resTemp[Key.c_str()].encode(); // printf("-TempValue=== %s", TempValue.c_str()); resTemp.clear(); resTemp.decode(TempValue.c_str()); strTemp = strTemp.substr(pos + 1, strTemp.length() - pos - 1); //printf("-************--%s", strTemp.c_str()); } if (strTemp != "") { strValue = (string)resTemp[strTemp.c_str()]; } else { strValue = (string)resTemp; } } //printf("------------%s", strValue.c_str()); return true; } bool nsGEN::PSGHRDriver::SetDeviceConfigValue(ResDataObject& config, const char* pInnerKey, int nPathID, const char* szValue) { string strTemp = pInnerKey; FDEBUG("Begin to change {$} item value to {$}", pInnerKey, szValue); if (1 == nPathID) //��DriverConfig·����ÿ��DPC�Լ��������ļ���ȡ { try { int pos = 0; ResDataObject* resTemp = &config; while ((pos = strTemp.find_first_of(',')) != string::npos) { string Key = strTemp.substr(0, pos); resTemp = &(*resTemp)[Key.c_str()]; strTemp = strTemp.substr(pos + 1, strTemp.length() - pos - 1); } if (strTemp != "") { (*resTemp)[strTemp.c_str()] = szValue; } else { *resTemp = szValue; } } catch (ResDataObjectExption& e) { FERROR("SetDriverConfigvalue crashed: {$}", e.what()); return false; } } return true; } //----------------------------------------------------------------------------- // GetIODriver & CreateIODriver //----------------------------------------------------------------------------- static nsGEN::PSGHRDriver gIODriver; extern "C" CCOS::Dev::IODriver * GetIODriver() { return &gIODriver; } extern "C" CCOS::Dev::IODriver * CreateIODriver() { pIODriver = new nsGEN::PSGHRDriver(); return pIODriver; }